Skip to main content
Log in

The final stage of droplet evaporation on black silicon by schlieren technique with a graded filter

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

A reflectance-schlieren technique, enhanced by the stepped gradient filter, is applied for accurate measurements of the map of thin liquid film/droplet thicknesses and surface deformations, allowing measuring angles of surface inclination in the range of \([- 5^{\circ }, 5^{\circ }]\). In the present paper, we investigated the final stage of droplet evaporation of non-volatile water and volatile perfectly wetting liquids FC-72 and HFE-7100. Thin liquid film thickness down to 2 \(\upmu\)m has been measured by using black silicon substrate (b-Si), which has low reflectivity and high absorption of visible light. The substrate is heated in the temperature range from 20 to 50 \(^{\circ }\)C. The liquid bump occurrence in the periphery of the non-volatile droplet, the thin liquid film breakup, and ring formation are characterized. The droplet fragmentation into picolitre-sized pieces is observed for volatile low surface tension liquids. The specific evaporation rate is confirmed to increase proportionally to the contact line velocity. The adopted schlieren technique is also found to be applicable for observations from above of the bubble dynamics inside a liquid film and for measurements of the receding contact angles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Ayvazyan GY et al (2021) Anti-reflection properties of black silicon coated with thin films of metal oxides by atomic layer deposition. J Contemp Phys (Armen Acad Sci) 56(3):240–246

    Article  Google Scholar 

  • Brutin D, Starov V (2018) Recent advances in droplet wetting and evaporation. Chem Soc Rev 47:558–585. https://doi.org/10.1039/C6CS00902F

    Article  Google Scholar 

  • Cazabat AM, Guena G (2010) Evaporation of macroscopic sessile droplets. Soft Matter 6:2591–2612. https://doi.org/10.1039/b924477h

    Article  Google Scholar 

  • Chandra S, Avedisian C (1991) On the collision of a droplet with a solid surface. Proceedings of the royal society of London. Ser: Math Phys Sci 432(1884):13–41

    Google Scholar 

  • Cherdantsev AV, Gavrilov NV, Ermanyuk EV (2021) Study of initial stage of entry of a solid sphere into shallow liquid with synthetic schlieren technique. Exp Therm Fluid Sci 125:110375. https://doi.org/10.1016/j.expthermflusci.2021.110375

    Article  Google Scholar 

  • Chinnov E, Shatskiy E (2019) Destruction of waves and formation of rivulets on the surface of a heated liquid film at Re=10. Int J Mutiph Flow 120:103106. https://doi.org/10.1016/j.ijmultiphaseflow.2019.103106

    Article  Google Scholar 

  • Dhavaleswarapu HK, Migliaccio CP, Garimella SV, Murthy JY (2010) Experimental investigation of evaporation from low-contact-angle sessile droplets. Langmuir 26(2):880–888. https://doi.org/10.1021/la9023458

    Article  Google Scholar 

  • Gatapova EY, Semenov AA, Zaitsev DV, Kabov OA (2014) Evaporation of a sessile water drop on a heated surface with controlled wettability. Colloids Surf: Physicochem Eng Asp 441:776–785. https://doi.org/10.1016/j.colsurfa.2013.05.046

    Article  Google Scholar 

  • Gatapova E. Ya, Shonina AM, Safonov AI, Sulyaeva VS, Kabov OA (2018) Evaporation dynamics of a sessile droplet on glass surfaces with fluoropolymer coatings: Focusing on the final stage of thin droplet evaporation. Soft Matter 14:1811–1821. https://doi.org/10.1039/c7sm02192e

    Article  Google Scholar 

  • Gatapova EY, Sitnikov VO, Sharaborin DK (2022) Visualization of drop and bubble dynamics on a heated sapphire plate by high-speed camera enhanced by stereomicroscope. J Flow Vis Image Process 29(2):87–103

    Article  Google Scholar 

  • Gokhale SJ, Plawsky JL, Wayner PC (2003) Experimental investigation of contact angle, curvature, and contact line motion in dropwise condensation and evaporation. J Colloid Interface Sci 259(2):354–366. https://doi.org/10.1016/S0021-9797(02)00213-8

    Article  Google Scholar 

  • Gomit G, Chatellier L, David L (2022) Free-surface flow measurements by non-intrusive methods: a survey. Exp Fluids 63(6):1–25

    Article  Google Scholar 

  • Guena G, Poulard C, Voue M, Coninck JD, Cazabat AM (2006) Evaporation of sessile liquid droplets. Colloids Surf: Physicochem Eng Asp 291:191–196. https://doi.org/10.1016/j.colsurfa.2006.07.021

    Article  Google Scholar 

  • Günay AA, Kim M-K, Yan X, Miljkovic N, Sett S (2021) Droplet evaporation dynamics on microstructured biphilic, hydrophobic, and smooth surfaces. Exp Fluids 62(7):1–14

    Article  Google Scholar 

  • Her T-H, Finlay RJ, Wu C, Deliwala S, Mazur E (1998) Microstructuring of silicon with femtosecond laser pulses. Appl Phys Lett 73(12):1673–1675. https://doi.org/10.1063/1.122241

    Article  Google Scholar 

  • Ivanova EP et al (2013) Bactericidal activity of black silicon. Nat commun 4(1):1–7

    Article  Google Scholar 

  • Joannes L, Dubois F, Legros J-C (2003) Phase-shifting schlieren: high-resolution quantitative schlieren that uses the phase-shifting technique principle. Appl Opt 42(25):5046–5053. https://doi.org/10.1364/AO.42.005046

    Article  Google Scholar 

  • Josyula T, Mahapatra PS, Pattamatta A (2022) Internal flow in evaporating water drops: dominance of Marangoni flow. Exp Fluids 63(2):1–15

    Article  Google Scholar 

  • Kabov O, Legros J, Marchuk I, Sheid B (2001) Deformation of the free surface in a moving locally-heated thin liquid layer. Fluid Dyn 36(3):521–528

    Article  MATH  Google Scholar 

  • Kabov OA, Scheid B, Sharina IA, Legros J-C (2002) Heat transfer and rivulet structures formation in a falling thin liquid film locally heated. Int J Therm Sci 41(7):664–672

    Article  Google Scholar 

  • Kaelble D (1970) Dispersion-polar surface tension properties of organic solids. J Adhes 2(2):66–81

    Article  Google Scholar 

  • Katkov MV, Ayvazyan GY, Shayapov VR, Lebedev MS (2020) Modeling of the optical properties of black silicon passivated by thin films of metal oxides. J Contemp Phys (Armen Acad Sci) 55(1):16–22

    Article  Google Scholar 

  • Kofman N, Mergui S, Ruyer-Quil C (2014) Three-dimensional instabilities of quasi-solitary waves in a falling liquid film. J Fluid Mech 757:854–887

    Article  MATH  Google Scholar 

  • Langley KR, Li EQ, Vakarelski IU, Thoroddsen ST (2018) The air entrapment under a drop impacting on a nano-rough surface. Soft Matter 14(37):7586–7596

    Article  Google Scholar 

  • Lefèvre F, Rullière R, Lips S, Bonjour J (2010) Confocal microscopy for capillary film measurements in a flat plate heat pipe. J Heat Transf 132(3):031502. https://doi.org/10.1115/1.4000057

    Article  Google Scholar 

  • Li H, Avila M, Xu D (2021) A single-camera synthetic schlieren method for the measurement of free liquid surfaces. Exp Fluids 62(11):1–15

    Article  Google Scholar 

  • Liu X-L et al (2018) infinite sensitivity of black silicon ammonia sensor achieved by optical and electric dual drives. ACS Appl Mater Interfaces 10(5):5061–5071. https://doi.org/10.1021/acsami.7b16542

    Article  Google Scholar 

  • Moisy F, Rabaud M, Salsac K (2009) A synthetic schlieren method for the measurement of the topography of a liquid interface. Expe Fluids 46(6):1021–1036

    Article  Google Scholar 

  • Mollaret R, Sefiane K, Christy JR, Veyret D (2004) Experimental and numerical investigation of the evaporation into air of a drop on a heated surface. Chem Eng Res Des 82(4):471–480. https://doi.org/10.1205/026387604323050182

    Article  Google Scholar 

  • Narayan LS, Srivastava A (2021) On the identification and mapping of three distinct stages of single vapor bubble growth with the corresponding microlayer dynamics. Int J Multiph Flow 142:103722. https://doi.org/10.1016/j.ijmultiphaseflow.2021.103722

    Article  Google Scholar 

  • North R (1952) Schlieren systems using graded filters (Aeronautical Research Council, Fluid Motion Sub-Committee, 1952)

  • Oh J, Yuan H-C, Branz HM (2012) An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures. Nat Nanotechnol 7(11):743–748

    Article  Google Scholar 

  • Ozbelge HO, Lightfoot EN, Miller EE (1981) Reflectance-schlieren technique for measurement of free liquid surface perturbations. J. Phys. E: Sci. Instrum. 14(12):1381–1385. https://doi.org/10.1088/0022-3735/14/12/008

    Article  Google Scholar 

  • Panigrahi PK, Muralidhar K (2012) Schlieren and shadowgraph methods in heat and mass transfer, vol 2, 1st edn. Springer, New York

    Book  Google Scholar 

  • Poulard C, Benichou O, Cazabat AM (2003) Freely receding evaporating droplets. Langmuir 19(21):8828–8834. https://doi.org/10.1021/la030162j

    Article  Google Scholar 

  • Schardin H (1942) Die Schlierenverfahren und ihre Anwendungen. In: Ergebnisse der exakten naturwissenschaften. Ergebnisse der Exakten Naturwissenschaften, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0111981

  • Scheid B, Kabov O, Minetti C, Colinet P, Legros JC (2000) Measurement of free surface deformation by reflectance-schlieren method. In: Proceedings of 3rd European conference on heat mass transfer, Heidelberg, pp 651–657

  • Settles G (1985) Colour-coding schlieren techniques for the optical study of heat and fluid flow. Int J Heat Fluid Flow 6(1):3–15

    Article  Google Scholar 

  • Settles GS (2001) Schlieren and shadowgraph techniques: visualizing phenomena in transparent media. Springer Science & Business Media

    Book  MATH  Google Scholar 

  • Shen L, Ren J, Duan F (2020) Surface temperature transition of a controllable evaporating droplet. Soft Matter 16:9568–9577. https://doi.org/10.1039/D0SM01381A

    Article  Google Scholar 

  • Thomas L et al (1996) Measurement of the slope of an unsteady liquid surface along a line by an anamorphic schlieren system. Meas Sci Technol 7(8):1134–1139. https://doi.org/10.1088/0957-0233/7/8/008

    Article  Google Scholar 

  • Tsoumpas Y, Dehaeck S, Rednikov A, Colinet P (2015) Effect of Marangoni flows on the shape of thin sessile droplets evaporating into air. Langmuir 31(49):13334–13340. https://doi.org/10.1021/acs.langmuir.5b02673

    Article  Google Scholar 

  • Zakharin B, Stricker J (2004) Schlieren systems with coherent illumination for quantitative measurements. Appl Opt 43(25):4786–4795

    Article  Google Scholar 

  • Zang D, Tarafdar S, Tarasevich YY, Choudhury MD, Dutta T (2019) Evaporation of a droplet: from physics to applications. Phys Rep 804:1–56

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Russian Science Foundation (Project No. 20-19-00722).

Author information

Authors and Affiliations

Authors

Contributions

EYG conceptualized the research and methodology. GYA performed black silicon preparation. AAS, YAP performed experiments. YAP performed data curation and developed software. EYG supervised, validated, interpreted results and wrote the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Elizaveta Ya. Gatapova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peschenyuk, Y.A., Semenov, A.A., Ayvazyan, G.Y. et al. The final stage of droplet evaporation on black silicon by schlieren technique with a graded filter. Exp Fluids 64, 1 (2023). https://doi.org/10.1007/s00348-022-03541-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-022-03541-3

Navigation