Skip to main content
Log in

10 kHz molecular tagging velocimetry in a Mach 4 air flow with acetone vapor seeding

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

In this work, 10 kHz molecular tagging velocimetry (MTV) in a \(M_\infty = 4\) Ludwieg tube is done using a partial pressure of acetone seeded into the facility driver tube. Despite using air as the primary operating gas, the resulting emission of the written MTV line is long-lived, which is desirable for flow tagging. Velocimetry measurements done in the freestream are compared to basic compressible flow theory, and measurements in the turbulent boundary layer on the tunnel floor are presented with measurements down to a distance of \(y/\delta \approx 0.11\) obtained. In total, the technique shows promise for effective velocimetry in supersonic tunnels and is accessible for Nd:YAG pulse burst laser systems without the need for wavelength tunability.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Bowersox RD (1996) Combined laser Doppler velocimetry and cross-wire anemometry analysis for supersonic turbulent flow. AIAA J 34(11):2269–2275

    Article  Google Scholar 

  • Brooks JM, Gupta AK, Smith M, Marineau E, Tatum KE (2019) High-speed local particle injection for particle image velocimetry. AIAA J 57(10):4490–4503

    Article  Google Scholar 

  • Danehy PM, Burns RA, Reese DT, Retter JE, Kearney SP (2022) FLEET velocimetry for aerodynamics. Annu Rev Fluid Mech 54(1):525–553. https://doi.org/10.1146/annurev-fluid-032321-025544

    Article  Google Scholar 

  • Danehy PM, O’Byrne S, Frank A, Houwing P, Fox JS, Smith DR (2003) Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide. AIAA J 41(2):263–271

    Article  Google Scholar 

  • Dogariu A, Dogariu LE, Smith MS, McManamen B, Lafferty JF, Miles RB (2021) Velocity and temperature measurements in mach 18 nitrogen flow at tunnel 9. In: AIAA Scitech 2021 Forum, p 0020

  • Felver J, Slipchenko MN, Braun EL, Meyer TR, Roy S (2020) High-energy laser pulses for extended duration megahertz-rate flow diagnostics. Opt Lett 45(16):4583–4586. https://doi.org/10.1364/OL.400831

    Article  Google Scholar 

  • Fisher JM, Chynoweth BC, Smyser ME, Webb AM, Slipchenko MN, Jewell JS, Meyer TR, Beresh SJ (2021) Femtosecond Laser electronic excitation tagging velocimetry in a mach six quiet tunnel. AIAA J 59(2):768–772

    Article  Google Scholar 

  • Hill JL, Hsu PS, Jiang N, Grib SW, Roy S, Borg M, Thomas L, Reeder M, Schumaker SA (2021) Hypersonic N 2 boundary layer flow velocity profile measurements using FLEET. Appl Opt 60(15):C38–C46

    Article  Google Scholar 

  • Hsu PS, Jiang N, Jewell JS, Felver JJ, Borg M, Kimmel R, Roy S (2020) 100 kHz PLEET velocimetry in a Mach-6 Ludwieg tube. Opt Exp 28(15):21982–21992

    Article  Google Scholar 

  • Jiang N, Halls BR, Stauffer HU, Danehy PM, Gord JR, Roy S (2016) Selective two-photon absorptive resonance femtosecond-laser electronic-excitation tagging velocimetry. Opt Lett 41(10):2225–2228

    Article  Google Scholar 

  • Jiang N, Hsu P, Grib SW, Slipchenko M, Roy S, Shekhtman D, Parziale N, Smith MS, Spicer A (2022) Mach 18 Flow Velocimetry with 100-kHz KTV and PLEET in AEDC Tunnel 9. In: AIAA SCITECH 2022 Forum, p 0898

  • Jiang N, Mance JG, Slipchenko MN, Felver JJ, Stauffer HU, Yi T, Danehy PM, Roy S (2017) Seedless velocimetry at 100 kHz with picosecond-laser electronic-excitation tagging. Opt Lett 42(2):239–242

    Article  Google Scholar 

  • Jiang N, Nishihara M, Lempert WR (2010) Quantitative NO 2 molecular tagging velocimetry at 500 kHz frame rate. Appl Phys Lett 97(22):221103

    Article  Google Scholar 

  • Lempert WR, Jiang N, Sethuram S, Samimy M (2002) Molecular tagging velocimetry measurements in supersonic microjets. AIAA J 40(6):1065–1070

    Article  Google Scholar 

  • Lester LE, Gragston M (2022) Velocity, mach number, and static temperature measurements in supersonic flows with 10 kHz laser-induced schliere anemometry. In: AIAA SCITECH 2022 Forum, p 1165

  • Lozano A, Yip B, Hanson R (1992) Acetone: a tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence. Exp Fluids 13(6):369–376

    Article  Google Scholar 

  • Michael J, Edwards M, Dogariu A, Miles R (2012) Velocimetry by femtosecond laser electronic excitation tagging (FLEET) of air and nitrogen. In: 50th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, p 1053

  • Parziale N, Smith M, Marineau E (2015) Krypton tagging velocimetry of an underexpanded jet. Appl Opt 54(16):5094–5101

    Article  Google Scholar 

  • Parziale NJ, Mustafa MA, Shekhtman D, Austin JM, Yu WM (2021) Krypton tagging velocimetry (KTV) investigation in the caltech T5 reflected-shock tunnel

  • Pitz RW, Lahr MD, Douglas ZW, Wehrmeyer JA, Hu S, Carter CD, Hsu KY, Lum C, Koochesfahani MM (2005) Hydroxyl tagging velocimetry in a supersonic flow over a cavity. Appl Opt 44(31):6692–6700

    Article  Google Scholar 

  • Rasband WS (2011) Imagej, us national institutes of health, Bethesda, Maryland, USA. http://imagej. nih. gov/ij/

  • Russell C, Jiang N, Danehy P, Zhang Z, Roy S (2021) Three-component flow velocity measurements with stereoscopic picosecond laser electronic excitation tagging. Appl Opt 60(15):C121–C130

    Article  Google Scholar 

  • Schrijer FF, Bannink WJ (2010) Description and flow assessment of the delft hypersonic Ludwieg tube. J Spacecr Rocket 47(1):125–133

    Article  Google Scholar 

  • Thurber MC, Grisch F, Kirby BJ, Votsmeier M, Hanson RK (1998) Measurements and modeling of acetone laser-induced fluorescence with implications for temperature-imaging diagnostics. Appl Opt 37(21):4963–4978

    Article  Google Scholar 

  • Thurow B, Jiang N, Samimy M, Lempert W (2004) MHz rate planar Doppler velocimetry in supersonic jets. In: 42nd AIAA aerospace sciences meeting and exhibit, p. 23

  • Wei T, Schmidt R, McMurtry P (2005) Comment on the Clauser chart method for determining the friction velocity. Exp Fluids 38(5):695–699

    Article  Google Scholar 

  • White F (2006) Viscous Fluid Flow. McGraw-Hill, McGraw-Hill international edition

    Google Scholar 

  • Williams OJ, Nguyen T, Schreyer AM, Smits AJ (2015) Particle response analysis for particle image velocimetry in supersonic flows. Phys Fluids 27(7):076101

    Article  Google Scholar 

  • Yuen LS, Peters JE, Lucht RP (1997) Pressure dependence of laser-induced fluorescence from acetone. Appl Opt 36(15):3271–3277

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Kirk Davenport for assistance with the Mach 4 operation and Prof. Zhili Zhang for helpful discussions. The pulse burst laser system was funded through ONR contract N00014-15-1-2269, and this effort was in part enabled by ONR contracts N00014-15-1-2269 and N00014-18-1-2688.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Gragston.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (avi 86788 KB)

Supplementary file 2 (avi 10036 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gragston, M., Smith, C.D. 10 kHz molecular tagging velocimetry in a Mach 4 air flow with acetone vapor seeding. Exp Fluids 63, 85 (2022). https://doi.org/10.1007/s00348-022-03438-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-022-03438-1

Navigation