Skip to main content
Log in

Unstationary dynamics of drops subjected to MHz-surface acoustic waves modulated at low frequency

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

In the present work, we investigate the unstationary dynamics of sessile droplets subjected to high-frequency surface acoustic waves modulated at a lower frequency close to the first inertio-capillary resonance mode of the drop. Under the action of both acoustic streaming and radiation pressure, the droplet response combines (i) a directional motion and (ii) oscillations of its shape and contact-line position. The droplet oscillations and time-averaged velocity show strong dependency on the modulation frequency. While the former dependence is linked to some resonance effects (harmonic and parametric), the latter one is still an unsolved issue. To get further insight of the underlying physics, we investigate here the fast oscillating dynamics of the drop contact line and of the dynamical contact angles through high-speed and high-resolution measurements at various modulation frequency. At odds with what is predicted and measured in stationary moving contact lines, we show that the contact-line velocity exhibits complex, non-single-valued dependence with the dynamic contact angles.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alghane M, Fu YQ, Chen BX, Li Y, Desmulliez MPY, Walton AJ (2012) Frequency effect on streaming phenomenon induced by Rayleigh surface acoustic wave in microdroplets. J Appl Phys 112:084902

    Article  Google Scholar 

  • Andrieu C, Sykes C, Brochard F (1994) Average spreading parameter on heterogeneous surfaces. Langmuir 10:2077–2080

    Article  Google Scholar 

  • Baudoin M, Brunet P, Bou Matar O, Herth E (2012) Low power sessile droplets actuation via modulated surface acoustic waves. Appl Phys Lett 100:154102

    Article  Google Scholar 

  • Bonn D, Eggers J, Indekeu J, Meunier J, Rolley E (2009) Wetting and spreading. Rev Mod Phys 81:739–805

    Article  Google Scholar 

  • Bostwick JB, Steen PH (2009) Capillary oscillations of a constrained liquid drop. Phys Fluids 21:032108

    Article  MATH  Google Scholar 

  • Bostwick J. B, Steen PH (2014) Dynamics of sessile drops. Part 1. Inviscid theory. J Fluid Mech 760:5–38

    Article  MathSciNet  MATH  Google Scholar 

  • Bradshaw JT, Billingham J (2018) Thick drops climbing uphill on an oscillating substrate. J Fluid Mech 840:131–153

    Article  MathSciNet  MATH  Google Scholar 

  • Brunet P, Eggers J, Deegan RD (2007) Vibration-induced climbing of drops. Phys Rev Lett 99:144501

    Article  Google Scholar 

  • Brunet P, Baudoin M, Bou-Matar O, Zouesthiagh F (2010) Droplets displacement and oscillations induced by ultrasonic surface acoustic waves: a quantitative study. Phys Rev E 81:036315

    Article  Google Scholar 

  • Burgmann S, Dues M, Barwari B, Steinbock J, Bttner L, Czarske J, Janoske U (2021) Flow measurements in the wake of an adhering and oscillating droplet using laser Doppler velocity profile sensor. Exp Fluids 62:47

    Article  Google Scholar 

  • Bussonniere A, Baudoin M, Brunet P, Bou Matar O (2016) Dynamics of sessile and pendant drops excited by surface acoustic waves: gravity effects and correlation between oscillatory and translational motions. Phys Rev E 93:053106

    Article  Google Scholar 

  • Bussonniere A, Bou Matar-Lacaze O, Baudoin M, Brunet P (2021) Method for increasing the ability of at least one droplet to slide over a medium, US Patent 11,090,698

  • Celestini F, Kofman R (2006) Vibration of submillimeter-size supported droplets Phys. Rev E 73:041602

    Google Scholar 

  • Chang CT, Bostwick JB, Daniel S, Steen PH (2015) Dynamics of sessile drops. Part 2. Experiment. J Fluid Mech 768:442–467

    Article  Google Scholar 

  • Chastrette N, Baudoin M, Brunet P, Royon L, Wunenburger R (2021) Elucidating the oscillation instability of sessile drops triggered by surface acoustic waves, Submitted

  • Chu B-T, Apfel RE (1982) Acoustic radiation pressure produced by a beam of sound. J Acoust Soc Am 72:1673–1687

    Article  Google Scholar 

  • Cinbis C, Mansour NN, Khuri-Yakub BT (1993) Effect of surface tension on the acoustic radiation pressure-induced motion of the water-air interface. J Acoust Soc Am 94:2365–2372

    Article  Google Scholar 

  • Connacher W, Orosco J, Friend JR (2020) Droplet ejection at controlled angles via acoustofluidic jetting. Phys Rev Lett 125:184504

    Article  Google Scholar 

  • Costalonga M, Brunet P (2020) Directional motion of vibrated sessile drops: a quantitative study. Phys Rev Fluids 5:023601

    Article  Google Scholar 

  • Cox RG (1998) Inertial and viscous effects on dynamic contact angles. J Fluid Mech 357:249–278

    Article  MathSciNet  MATH  Google Scholar 

  • Decker EL, Garoff S (1996) Using vibrational noise to probe energy barriers producing contact angle hysteresis. Langmuir 12:2100–2110

    Article  Google Scholar 

  • Della Volpe C, Maniglio D, Morra M, Soboni S (2002) The determination of a Ôstable-equilibriumÕ contact angle on heterogeneous and rough surfaces. Colloids Surf A 206:47–67

    Article  Google Scholar 

  • Dentry MB, Yeo LY, Friend JR (2014) Frequency effects on the scale and behavior of acoustic streaming. Phys Rev E 89:013203

    Article  Google Scholar 

  • Dimitrakopoulos P, Higdon JJL (1998) On the displacement of three-dimensional fluid droplets from solid surfaces in low-Reynolds-number shear flows. J Fluid Mech 377:189–222

    Article  MATH  Google Scholar 

  • Dussan VEB (1979) On the spreading of liquids on solid surfaces: static and dynamic contact lines. Annu Rev Fluid Mech 11:371–400

    Article  Google Scholar 

  • Eddi A, Winkels KG, Snoeijer JH (2013) Influence of droplet geometry on the coalescence of low viscosity drops. Phys Rev Lett 111:144502

    Article  Google Scholar 

  • Elrod SA, Hadimioglu B, Khuri-Yakub BT, Rawson EG, Richley E, Quate CF, Mansour NN, Lundgren TS (1989) Nozzleless droplet formation with focused acoustic beams. J Appl Phys 65:3441–3447

    Article  Google Scholar 

  • Fayzrakhmanova IS, Straube AV (2009) Stick-slip dynamics of an oscillated sessile drop. Phys Fluids 21:072104

    Article  MATH  Google Scholar 

  • Friend JR, Yeo LY (2011) Microscale acoustofluidics: microfluidics driven via acoustics and ultrasonics. Rev Modern Phys 83:647

    Article  Google Scholar 

  • Guo YJ, Lv HB, Li YF et al (2014) High frequency microfluidic performance of LiNbO3 and ZnO surface acoustic wave devices. J Appl Phys 116:024501

    Article  Google Scholar 

  • Hocking LM (1987) Waves produced by a vertically oscillating plate. J Fluid Mech 179:267–281

    Article  MATH  Google Scholar 

  • Hocking LM, Davis SH (2002) Inertial effects in time-dependent motion of thin films. J Fluid Mech 467:1–17

    Article  MathSciNet  MATH  Google Scholar 

  • Hodgson G, Passmore M, Skarysz M, Garmory A, Paolillo F (2021) Contact angle measurements for automotive exterior water management. Exp Fluids 62:119

    Article  Google Scholar 

  • Insepov Z, Ramazanova Z, Zhakiyev N, Tynyshtykbayev K (2021) Water droplet motion under the influence of Surface Acoustic Waves (SAW). J Phys Commun 5:035009

    Article  Google Scholar 

  • Issenmann B, Nicolas A, Wunenburger R, Manneville S, Delville J-P (2008) Deformation of acoustically transparent fluid interfaces by the acoustic radiation pressure. Europhys Lett 83:34002

    Article  Google Scholar 

  • Jiang L, Perlin M, Schultz WW (2004) Contact-line dynamics and damping for oscillatory free surface flows. Phys Fluids 16:748–758

    Article  MathSciNet  MATH  Google Scholar 

  • Johnson RE, Dettre RH (1964) Contact angle hysteresis. Adv Chem Ser 43:112–135

    Article  Google Scholar 

  • Lamb H (1932) Hydrodynamics. Cambridge University Press, Cambridge, England

    MATH  Google Scholar 

  • Le Grand N, Daerr A, Limat L (2005) Shape and motion of drops sliding down an inclined plane. J Fluid Mech 541:293

    Article  MATH  Google Scholar 

  • Lei Y, Hu H (2020) SAW-driven droplet jetting technology in microfluidic: a review. Biomicrofluidics 14:061505

    Article  Google Scholar 

  • Li F, Mugele F (2008) How to make sticky surfaces slippery: contact angle hysteresis in electrowetting with alternating voltage. Appl Phys Lett 92:244108

    Article  Google Scholar 

  • Long J, Chen P (2006) On the role of energy barriers in determining contact angle hysteresis. Adv Coll Interf Sci 127:55–66

    Article  Google Scholar 

  • Miles JW (1990) Capillary-viscous forcing of surface waves. J Fluid Mech 219:635–646

    Article  MathSciNet  MATH  Google Scholar 

  • Noblin X, Buguin A, Brochard-Wyart F (2004) Vibrated sessile drops: transition between pinned and mobile contact line oscillations. Eur Phys J E 14:395–404

    Article  Google Scholar 

  • Noblin X, Kofman R, Celestini F (2009) Ratchetlike Motion of a Shaken Dro. Phys Rev Lett 102:194504

    Article  Google Scholar 

  • Perrin H, Lhermerout R, Davitt K, Rolley E, Andreotti B (2016) Defects at the nanoscale impact contact line motion at all scales. Phys Rev Lett 116:184502

    Article  Google Scholar 

  • Perrin H, Lhermerout R, Davitt K, Rolley E, Andreotti B (2018) Thermally activated motion of a contact line over defects. Soft Matter 14:1581–1595

    Article  Google Scholar 

  • Petrov J. G, Ralston J, Schneemilch M, Hayes RA (2003) Dynamics of Partial Wetting and Dewetting in Well-Defined Systems. J Phys Chem B 107:1634–1645

    Article  Google Scholar 

  • Puthenveettil BA, Senthilkumar VK, Hopfinger EJ (2013) Motion of drops on inclined surfaces in the inertial regime. J Fluid Mech 726:26–61

    Article  MATH  Google Scholar 

  • Riaud A, Baudoin M, Bou Matar O, Thomas J.-L., Brunet P (2017) On the influence of viscosity and caustics on acoustic streaming in sessile droplets: an experimental and a numerical study with a cost-effective method. J Fluid Mech 821:384–420

    Article  MathSciNet  MATH  Google Scholar 

  • Sartori P, Quagliati D, Varagnolo S, Pierno M, Mistura G, Magaletti F, Casciola CM (2015) Drop motion induced by vertical vibrations. New J Phys 17:113017

    Article  Google Scholar 

  • Sartori P, Guglielmin E, Ferraro D, Filippi D, Zaltron A, Pierno M, Mistura G (2019) Motion of Newtonian drops deposited on liquid-impregnated surfaces induced by vertical vibrations. J Fluid Mech 876:R4

    Article  Google Scholar 

  • Sharp JS (2012) Resonant properties of sessile droplets; contact angle dependence of the resonant frequency and width in glycerol/water mixtures. Soft Matter 8:399–407

    Article  Google Scholar 

  • Shilton RJ, Travagliati M, Beltram F, Cecchini M (2014) Nanoliter-Droplet acoustic streaming via ultra high surface acoustic waves. Adv Mat 26:4941–4946

    Article  Google Scholar 

  • Sikalo S, Tropea C, Ganic EN (2005) Dynamic wetting angle of a spreading droplet. Exp Thermal Fluid Sci 29:795–802

    Article  Google Scholar 

  • Snoeijer JH, Andreotti B (2013) Moving contact lines: scales, regimes and dynamical transitions. Ann Rev Fluid Mech 45:269–292

    Article  MathSciNet  MATH  Google Scholar 

  • Steen PH, Chang CT, Bostwick JB (2019) Droplet motions fill a periodic table. Proc Natl Acad Sci 116:4849–4854

    Article  Google Scholar 

  • Strani M, Sabetta F (1984) Free vibrations of a drop in partial contact with a solid support. J Fluid Mech 141:233

    Article  MATH  Google Scholar 

  • Ting C-L, Perlin M (1995) Boundary conditions in the vicinity of the contact line at a vertically oscillating upright plate: an experimental investigation. J Fluid Mech 295:263–300

    Article  Google Scholar 

  • Tsamopoulos J, Brown R (1983) Nonlinear oscillations of inviscid drops and bubbles. J Fluid Mech 127:519

    Article  MATH  Google Scholar 

  • Voinov OV (1976) Hydrodynamics of wetting. Fluid Dyn 11:714–721

    Article  Google Scholar 

  • Xia Y, Steen PH (2018) Moving contact-line mobility measured. J. Fluid Mech. 841:767–783

    Article  Google Scholar 

  • Xia Y, Steen P. H (2020) Dissipation of oscillatory contact lines using resonant mode scanning. NPJ Microgravity

Download references

Acknowledgements

We thank Maxime Costalonga for his help in data treatment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Brunet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brunet, P., Baudoin, M. Unstationary dynamics of drops subjected to MHz-surface acoustic waves modulated at low frequency. Exp Fluids 63, 34 (2022). https://doi.org/10.1007/s00348-021-03365-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-021-03365-7

Navigation