Skip to main content
Log in

Application of clustering and the Hungarian algorithm to the problem of consistent vortex tracking in incompressible flowfields

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The ability to track vortices spatially and temporally is of great interest for the study of complex and turbulent flows. A methodology to solve the problem of vortex tracking by the application of machine learning approaches is investigated. First a well-known vortex detection algorithm is applied to identify coherent structures. Hierarchical clustering is then conducted followed by a unique application of the Hungarian assignment algorithm. Application to a synthetic flowfield of merging Batchelor vortices results in robust vortex labelling even in a vortex merging event. A robotic PIV experimental dataset of a canonical Ahmed body is used to demonstrate the applicability of the method to three-dimensional flows.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Agüera N, Cafiero G, Astarita T, Discetti S (2016) Ensemble 3d PTV for high resolution turbulent statistics. Meas Sci Technol 27(12):1240111

    Article  Google Scholar 

  • Ahmed SR, Ramm G, Faltin G (1984) Some salient features of the time-averaged ground vehicle wake. SAE Tech 840300

  • Amsallam D, Zahr MJ, Farhat C (2012) Nonlinear model order reduction based on local reduced-order bases. Int J Numer Meth Eng 10:891–916

    Article  MathSciNet  Google Scholar 

  • Azijli I, Dwight RP (2015) Solenoidal filtering of volumetric velocity measurements using gaussian process regression. Exp Fluids 56:198

    Article  Google Scholar 

  • Batchelor GK (1964) Axial flow in trailing line vortices. J Fluid Mech 20(4):645–658

    Article  MathSciNet  Google Scholar 

  • de Bruin AC, Hegen GH, Rohne PB, Spalart PR (1996) Flow field survey in trailing vortex system behind a civil aircraft model at high lift. Technical report NLR TP 96284, National Aerospace Laboratory, NLR

  • Brunton SL, Noack BR, Koumoutsakos P (2019) Machine learning for fluid mechanics. Annu Rev Fluid Mech 52:1–31

    MATH  Google Scholar 

  • Chong MS, Perry AE, Cantwell BJ (1990) A general classification of three-dimensional flow fields. Phys Fluids A 2(5):765–777

    Article  MathSciNet  Google Scholar 

  • Cucitore R, Quadrio M, Baron A (1999) On the effectiveness and limitations of local criteria for the identification of a vortex. Eur J Mech B Fluids 18:261–282

    Article  MathSciNet  Google Scholar 

  • Deng L, Wang Y, Chen C, Liu Y, Wang F, Liu J (2020) A clustering-based approach to vortex extraction. J Vis 1–16

  • Deng L, Wang Y, Liu Y, Wang F, Li S, Liu J (2019) A CNN-based vortex identification method. J Vis 22(1):65–78

    Article  Google Scholar 

  • Dinits EA (1970) Algorithm for solution on a problem on maximum flow in a network with power estimation. Sov Math Doclady 11:1277–1280

    MATH  Google Scholar 

  • Edmonds J, Karp RM (1972) Theoretical improvements in algorithmic efficiency for network flow problems. J ACM 19:248–264

    Article  Google Scholar 

  • Graftieaux L, Michard M, Grosjean N (2001) Combining PIV, pod and vortex identification algorithms for the study of unsteady turbulent swirling flows. Meas Sci Technol 12:1422–1429

    Article  Google Scholar 

  • Gunther T, Theisel H (2017) The state of the art in vortex extraction. Comput Graph Forum 1981:1–24

    Google Scholar 

  • Haller G, Hadjighasem A, Farazmand M, Huhn F (2016) Defining coherent vortices objectively from the vorticity. J Fluid Mech 795:136–173

    Article  MathSciNet  Google Scholar 

  • Hardin JC, Wang FY (2003) Sound generation by aircraft wake vortices. Technical report CR-2003-212674, NASA

  • Hunt JCR, Wray AA, Moin P (1988) Eddies, streams and convergence zones in turbulent flows. Technical Report N89-24555, NASA Center for Turbulence Research

  • Jeong J, Hussain F (1995) On the identification of a vortex. J Fluid Mech 285:69–94

    Article  MathSciNet  Google Scholar 

  • Jux C, Sciacchitano A, Schneiders JFG, Scarano F (2018) Robotic volumetric PIV of a full-scale cyclist. Exp Fluids 74:1–15

    Google Scholar 

  • Kaiser E, Noack BR, Cordier L, Spohn A, Segond M, Abel M, Niven RK (2014) Cluster-based reduced-order modelling of a mixing layer. J Fluid Mech 754:365–414

    Article  Google Scholar 

  • Kim B, Gunther T (2019) Robust reference frame extraction from unsteady 2d vector fields with convolutional neural networks. Comput Graph Forum 38(3):285–295

    Article  Google Scholar 

  • Kline SJ, Robinson SK (1990) Turbulent boundary layer structure: progress, status and challenges. Struct Turbulen Drag Reduct 3–32

  • Kuhn HW (1955) The Hungarian method for the assignment problem. Naval Res Logist Q 2:83–97

    Article  MathSciNet  Google Scholar 

  • Lignarolo LEM, Ragni D, Scarano F, Ferreira CJS, van Bussel GJW (2015) Tip-vortex instability and turbulent mixing in wind-turbine wakes. J Fluid Mech 781:467–493

    Article  MathSciNet  Google Scholar 

  • Lugt HJ (1979) The dilemma of defining a vortex. In: Muller U, Roesner KG, Schmidt B (eds) In recent developments in theoretical and experimental fluid mechanics. Springer, New York, pp 113–138

    Google Scholar 

  • Lumley JL (1981) Coherent structures in turbulence. In: Meyer RE (ed) Transition and turbulence. Academic Press Inc., Canvridge, pp 215–242

    Chapter  Google Scholar 

  • Manning CD, Raghaven P, Schütze H (2008) In: Introduction to information retrieval. Cambridge University Press

  • Munkres J (1957) Algorithms for the assignment and transportation problems. J Soc Ind Appl Math 5:32–38

    Article  MathSciNet  Google Scholar 

  • Scarano F, Ghaemi S, Caridi GCA, Bosbach J, Dierksheide U, Sciacchitano A (2015) On the use of helium-filled soap bubbles for large-scale tomographic PIV in wind tunnel experiments. Exp Fluids 56(2):42

    Article  Google Scholar 

  • Schanz D, Gesemann S, Schroder A (2016) Shake-the-box: Lagrangian particle tracking at high particle image densities. Exp Fluids 57(5):1–27

    Article  Google Scholar 

  • Schneiders JFG, Scarano F, Jux C, Sciacchitano A (2018) Coaxial volumetric velocimetry. Meas Sci Technol 29(6):065201

  • Sciacchitano A, Giaquinta D (2019) Investigation of the ahmed body cross-wind flow topology by robotic volumetric PIV. In: Proceedings of the 13th international symposium on particle image velocimetry: 22–27 July, Munich, Germany, vol 13, pp 311–320

  • Sciacchitano A, Scarano F (2014) Elimination of PIV light reflections via a temporal high pass filter. Meas Sci Technol 25(8):084009

  • Sibson R (1972) An optimally efficient algorithm for the single-link cluster method. Comput J 16(1):30–34

    Article  MathSciNet  Google Scholar 

  • Simpson CE, Babinsky H, Harvey JK, Corkery S (2018) Detecting vortices within unsteady flows when using single-shot PIV. Exp Fluids 59:125

    Article  Google Scholar 

  • Spalart PR (1988) Direct simulation of a turbulent boundary layer up to rtheta = 1410. J Fluid Mech 187:61–98

    Article  Google Scholar 

  • Spencer NH (2013) In: Essentials of multivariate data analysis. CRC Press, Boca Raton FL, pp 91–95

  • Wang Y, Deng L, Yang Z, Zhao D, Wang F (2021) A rapid vortex identification method using fully convolutional segmentation network. Vis Comput 37:261–273

  • Xu R, Wunsch D (2008) Clustering, vol 10. Wiley, New York, pp 1–358

    Book  Google Scholar 

  • Zhang X, Toet W, Zerihan J (2006) Ground effect aerodynamics of race cars. Appl Mech Rev 59(1):33–49

    Article  Google Scholar 

  • Zhou J, Adrian RJ, Balachandar S, Kendall TM (1999) Mechanisms for generating coherent packets of hairpin vortices in channel flow. J Fluid Mech 387:353–396

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Edoardo Saredi from TU Delft for processing the Ahmed body data. Nicholas Chester, Dirk De Beer and Simon Hine are also thanked for supporting the publication of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. R. J. Stevens.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stevens, P.R.R.J., Sciacchitano, A. Application of clustering and the Hungarian algorithm to the problem of consistent vortex tracking in incompressible flowfields. Exp Fluids 62, 173 (2021). https://doi.org/10.1007/s00348-021-03265-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-021-03265-w

Navigation