Skip to main content

Advertisement

Log in

Review of recent progress in the supersonic cold-spraying technique with solid particles and liquid suspensions

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Supersonic cold-spraying involves the use of a converging–diverging de Laval nozzle to convert an upstream flow of pressurized gas at high temperature into a high-speed downstream flow in which particles are entrained, accelerated, and deposited on a substrate at supersonic speed. A chamber pressure of ≤ 10 bar enables the successful deposition of particles as large as a few micrometers in size. Particles of various types of materials, including metals, ceramics, nanowires, and graphene sheets, can be flattened and deposited onto substrates to produce thin films for energy and environmental applications. A liquid precursor comprising suspended particles of submicrometer dimensions can be atomized into micrometer-sized droplets, which are entrained and accelerated for film deposition. The dissolution of salt-based substances in the liquid precursor allows the liquid to be atomized into droplets and supplied to the supersonic stream. As a result, the droplets undergo evaporation and eventually yield salt residues during their flight. These salt residues are accelerated and deposited, permitting the construction of various nanostructures. Supersonic spraying is a versatile technique for constructing multilayer nanostructures with various functionalities for specific applications. In addition, supersonic spraying facilitates strong adhesion, which is necessary for the durable and reliable operation of the intended functions. Herein, we introduce the basic mechanisms of the supersonic spraying technique and its use in producing functional films for transparent flexible electronics, heat transfer enhancement, thermal and electrical insulation, and energy storage and conversion device applications.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • An S, Lee C, Liou M, Jo HS, Park JJ, Yarin AL, Yoon SS (2014) Supersonically blown ultrathin thorny devil nanofibers for efficient air cooling. ACS Appl Mater Interfaces 6:13657–13666

    Article  Google Scholar 

  • An S, Jo HS, Song KY, Mali MG, Al-Deyab SS, Yoon SS (2015) Electrically-charged recyclable graphene flakes entangled with electrospun nanofibers for the adsorption of organics for water purification. Nanoscale 7:19170–19177

    Article  Google Scholar 

  • An S, Jo HS, Kim DY, Lee HJ, Ju BK, Al-Deyab SS, Ahn JH, Qin Y, Swihart MT, Yarin AL, Yoon SS (2016a) Self-junctioned copper nanofiber transparent flexible conducting film via electrospinning and electroplating. Adv Mater 28:7149–7154

    Article  Google Scholar 

  • An S, Kim DY, Lee JG, Jo HS, Kim MW, Al-Deyab SS, Choi J, Yoon SS (2016b) Supersonically sprayed reduced graphene oxide film to enhance critical heat flux in pool boiling. Int J Heat Mass Transfer 98:124–130

    Article  Google Scholar 

  • An S, Joshi BN, Lee JG, Lee MW, Kim YI, Kim MW, Jo HS, Yoon SS (2017) A comprehensive review on wettability, desalination, and purification using graphene-based materials at water interfaces. Catal Today 295:14–25

    Article  Google Scholar 

  • Assadi H, Gärtner F, Stoltenhoff T, Kreye H (2003) Bonding mechanism in cold gas spraying. Acta Mater 51:4379–4394

    Article  Google Scholar 

  • Assadi H, Schmidt T, Richter H, Kliemann J-O, Binder K, Gärtner F, Klassen T, Kreye H (2011) On parameter selection in cold spraying. J Therm Spray Technol 20:1161–1176

    Article  Google Scholar 

  • Borchers C, Gärtner F, Stoltenhoff T, Assadi H, Kreye H (2003) Microstructural and macroscopic properties of cold sprayed copper coatings. J Appl Phys 93:10064–10070

    Article  Google Scholar 

  • Borchers C, Gärtner F, Stoltenhoff T, Kreye H (2004) Microstructural bonding features of cold sprayed face centered cubic metals. J Appl Phys 96:4288–4292

    Article  Google Scholar 

  • Borchers C, Gärtner F, Stoltenhoff T, Kreye H (2005) Formation of persistent dislocation loops by ultra-high strain-rate deformation during cold spraying. Acta Mater 53:2991–3000

    Article  Google Scholar 

  • Bu H, Yandouzi M, Lu C, MacDonald D, Jodoin B (2012) Cold spray blended Al+ Mg17Al12 coating for corrosion protection of AZ91D magnesium alloy. Surf Coat Technol 207:155–162

    Article  Google Scholar 

  • Chabot V, Higgins D, Yu A, Xiao X, Chen Z, Zhang J (2014) A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy Environ Sci 7:1564–1596

    Article  Google Scholar 

  • Chandrashekar BN, Deng B, Smitha AS, Chen Y, Tan C, Zhang H, Peng H, Liu Z (2015) Roll-to-roll green transfer of CVD graphene onto plastic for a transparent and flexible triboelectric nanogenerator. Adv Mater 27:5210–5216

    Article  Google Scholar 

  • Chiang C-Y, Chang M-H, Liu H-S, Tai CY, Ehrman S (2012) Process intensification in the production of photocatalysts for solar hydrogen generation. Ind Eng Chem Res 51:5207–5215

    Article  Google Scholar 

  • Cho S, Takagi K, Kwon H, Seo D, Ogawa K, Kikuchi K, Kawasaki A (2012) Multi-walled carbon nanotube-reinforced copper nanocomposite coating fabricated by low-pressure cold spray process. Surf Coat Technol 206:3488–3494

    Article  Google Scholar 

  • Choi W, Li L, Luzin V, Neiser R, Gnäupel-Herold T, Prask H, Sampath S, Gouldstone A (2007) Integrated characterization of cold sprayed aluminum coatings. Acta Mater 55:857–866

    Article  Google Scholar 

  • Choi H, Lee J-G, Mai XD, Beard MC, Yoon SS, Jeong S (2017) Supersonically spray-coated colloidal quantum dot ink solar cells. Sci Rep 7:622

    Article  Google Scholar 

  • Cormier Y, Dupuis P, Jodoin B, Corbeil A (2013) Net shape fins for compact heat exchanger produced by cold spray. J Therm Spray Technol 22:1210–1221

    Article  Google Scholar 

  • Dirin DN, Dreyfuss S, Bodnarchuk MI, Nedelcu G, Papagiorgis P, Itskos G, Kovalenko MV (2014) Lead halide perovskites and other metal halide complexes as inorganic capping ligands for colloidal nanocrystals. J Am Chem Soc 136:6550–6553

    Article  Google Scholar 

  • Dorfman MR, Sharma A (2013) Challenges and strategies for growth of thermal spray markets: the six-pillar plan. J Therm Spray Technol 22:559–563

    Article  Google Scholar 

  • Dykhuizen R, Smith M (1998) Gas dynamic principles of cold spray. J Therm Spray Technol 7:205–212

    Article  Google Scholar 

  • Dykhuizen R, Smith M, Gilmore D, Neiser R, Jiang X, Sampath S (1999) Impact of high velocity cold spray particles. J Therm Spray Technol 8:559–564

    Article  Google Scholar 

  • Espallargas N (2015) Future development of thermal spray coatings: types, designs, manufacture and applications. Woodhead Publishing, Cambridge

    Google Scholar 

  • Falcaro P, Ricco R, Doherty CM, Liang K, Hill AJ, Styles MJ (2014) MOF positioning technology and device fabrication. Chem Soc Rev 43:5513–5560

    Article  Google Scholar 

  • Fauchais P, Heberlein JV, Boulos MI (2014) Thermal spray fundamentals: from powder to part. Springer, New York

    Book  Google Scholar 

  • Gärtner F, Stoltenhoff T, Voyer J, Kreye H, Riekehr S, Kocak M (2006) Mechanical properties of cold-sprayed and thermally sprayed copper coatings. Surf Coat Technol 200:6770–6782

    Article  Google Scholar 

  • Ghelichi R, MacDonald D, Bagherifard S, Jahed H, Guagliano M, Jodoin B (2012) Microstructure and fatigue behavior of cold spray coated Al5052. Acta Mater 60:6555–6561

    Article  Google Scholar 

  • Gilje S, Han S, Wang M, Wang KL, Kaner RB (2007) A chemical route to graphene for device applications. Nano Lett 7:3394–3398

    Article  Google Scholar 

  • Gilmore D, Dykhuizen R, Neiser R, Smith M, Roemer T (1999) Particle velocity and deposition efficiency in the cold spray process. J Therm Spray Technol 8:576–582

    Article  Google Scholar 

  • Gupta S, Qiao L, Zhao S, Xu H, Lin Y, Devaguptapu SV, Wang X, Swihart MT, Wu G (2016) Highly active and stable graphene tubes decorated with FeCoNi alloy nanoparticles via a template-free graphitization for bifunctional oxygen reduction and evolution. Adv Energy Mater 6:1601198

    Article  Google Scholar 

  • Gurav JL, Jung I-K, Park H-H, Kang ES, Nadargi DY (2010) Silica aerogel: synthesis and applications. J Nanomater 2010:23

    Article  Google Scholar 

  • Hardwicke CU, Lau Y-C (2013) Advances in thermal spray coatings for gas turbines and energy generation: a review. J Therm Spray Technol 22:564–576

    Article  Google Scholar 

  • Huang R, Fukanuma H (2012) Study of the influence of particle velocity on adhesive strength of cold spray deposits. J Therm Spray Technol 21:541–549

    Article  Google Scholar 

  • Hussain T, McCartney D, Shipway P, Zhang D (2009) Bonding mechanisms in cold spraying: the contributions of metallurgical and mechanical components. J Therm Spray Technol 18:364–379

    Article  Google Scholar 

  • Jacobson P, Stöger B, Garhofer A, Parkinson GS, Schmid M, Caudillo R, Mittendorfer F, Redinger J, Diebold U (2011) Disorder and defect healing in graphene on Ni(111). J Phys Chem Lett 3:136–139

    Article  Google Scholar 

  • Jiang F, Chen D, Li R, Wang Y, Zhang G, Li S, Zheng J, Huang N, Gu Y, Wang C (2013) Eco-friendly synthesis of size-controllable amine-functionalized graphene quantum dots with antimycoplasma properties. Nanoscale 5:1137–1142

    Article  Google Scholar 

  • Jo HS, An S, Lee JG, Park HG, Al-Deyab SS, Yarin AL, Yoon SS (2017a) Highly flexible, stretchable, patternable, transparent copper fiber heater on a complex 3D surface. NPG Asia Mater 9:e347–e347

    Article  Google Scholar 

  • Jo HS, Lee JG, An S, Kim TG, James SC, Choi J, Yoon SS (2017b) Supersonically sprayed, triangular copper lines for pool boiling enhancement. Int J Heat Mass Transfer 113:210–216

    Article  Google Scholar 

  • Jo HS, Kim MW, Kim TG, An S, Park HG, Lee JG, James SC, Choi J, Yoon SS (2018a) Supersonically spray-coated copper meshes as textured surfaces for pool boiling. Int J Therm Sci 132:26–33

    Article  Google Scholar 

  • Jo HS, Kim TG, Lee JG, Kim MW, Park HG, James SC, Choi J, Yoon SS (2018b) Supersonically sprayed nanotextured surfaces with silver nanowires for enhanced pool boiling. Int J Heat Mass Transfer 123:397–406

    Article  Google Scholar 

  • Jo HS, An S, Park CW, Woo DY, Yarin AL, Yoon SS (2019) Wearable, stretchable, transparent all-in-one soft sensor formed from supersonically sprayed silver nanowires. ACS Appl Mater Interfaces 11:40232–40242

    Article  Google Scholar 

  • Jodoin B (2002) Cold spray nozzle mach number limitation. J Therm Spray Technol 11:496–507

    Article  Google Scholar 

  • Joshi B, Lee JG, Samuel E, Jo HS, Kim TG, Swihart MT, Yoon WY, Yoon SS (2017a) Supersonically blown reduced graphene oxide loaded Fe–Fe3C nanofibers for lithium ion battery anodes. J Alloys Compd 726:114–120

    Article  Google Scholar 

  • Joshi BN, Lee J-G, An S, Kim DY, Lee JS, Hwang YK, Chang JS, Al-Deyab SS, Tan JC, Yoon SS (2017b) Tuning crystalline structure of zeolitic metal–organic frameworks by supersonic spraying of precursor nanoparticle suspensions. Mater Des 114:416–423

    Article  Google Scholar 

  • Joshi B, Samuel E, Kim TG, Park CW, Kim YI, Swihart MT, Yoon WY, Yoon SS (2018) Supersonically spray-coated zinc ferrite/graphitic-carbon nitride composite as a stable high-capacity anode material for lithium-ion batteries. J Alloys Compd 768:525–534

    Article  Google Scholar 

  • Kang H-K, Kang SB (2003) Tungsten/copper composite deposits produced by a cold spray. Scr Mater 49:1169–1174

    Article  Google Scholar 

  • Kang B, Lee KD, Lee J-g, Choi J-W, Yoon SS, Kang Y, Lee H-s, Kim D (2016) Influence of particle velocity of copper on emitter contact by cold-spray method. J Therm Spray Technol 25:465–472

    Article  Google Scholar 

  • Kelly PJ, Arnell RD (2000) Magnetron sputtering: a review of recent developments and applications. Vac 56:159–172

    Article  Google Scholar 

  • Kim DY, Park JJ, Lee JG, Kim D, Tark SJ, Ahn S, Yun JH, Gwak J, Yoon KH, Chandra S, Yoon SS (2013) Cold spray deposition of copper electrodes on silicon and glass substrates. J Therm Spray Technol 22:1092–1102

    Article  Google Scholar 

  • Kim DY, Sinha-Ray S, Park JJ, Lee JG, Cha YH, Bae SH, Ahn JH, Jung YC, Kim SM, Yarin AL, Yoon SS (2014) Self-healing reduced graphene oxide films by supersonic kinetic spraying. Adv Funct Mater 24:4986–4995

    Article  Google Scholar 

  • Kim DY, Lee JG, Joshi BN, Latthe SS, Al-Deyab SS, Yoon SS (2015) Self-cleaning superhydrophobic films by supersonic-spraying polytetrafluoroethylene–titania nanoparticles. J Mater Chem A 3:3975–3983

    Article  Google Scholar 

  • Kim DY, Joshi BN, Lee JG, Lee JH, Lee JS, Hwang YK, Chang JS, Al-Deyab S, Tan JC, Yoon SS (2016a) Supersonic cold spraying for zeolitic metal–organic framework films. Chem Eng J 295:49–56

    Article  Google Scholar 

  • Kim DY, Lee JG, Joshi B, Lee JH, Al-Deyab SS, Yoon HG, Yang DR, Yarin AL, Yoon SS (2016b) Supersonically sprayed thermal barrier layers using clay micro-particles. Appl Clay Sci 120:142–146

    Article  Google Scholar 

  • Kim MW, Kim TG, Jo HS, Lee JG, James SC, Choi MS, Kim WY, Yang JS, Choi J, Yoon SS (2018a) Nano-textured surfaces using hybrid micro-and nano-materials for efficient water cooling. Int J Heat Mass Transfer 123:1120–1127

    Article  Google Scholar 

  • Kim SD, Lee JG, Kim TG, Rana K, Jeong JY, Park JH, Yoon SS, Ahn JH (2018b) Additive-free electrode fabrication with reduced graphene oxide using supersonic kinetic spray for flexible lithium-ion batteries. Carbon 139:195–204

    Article  Google Scholar 

  • Kim TG, Lee JG, Park CW, Jo HS, Kim MW, van Hest MF, Cho DH, Chung YD, Yoon SS (2018c) Effect of supersonic spraying impact velocity on opto-electric properties of transparent conducting flexible films consisting of silver nanowire, ITO, and polyimide multilayers. J Alloys Compd 739:653–659

    Article  Google Scholar 

  • Kim TG, Park CW, Lee JG, Kim MW, Choi MS, Kim WY, Yang JS, Yoon SS (2018d) Supersonically sprayed clay, silica, and silica aerogel hybrid films as thermal and electrical barriers. Ceram Int 44:12934–12939

    Article  Google Scholar 

  • Kim TG, Samuel E, Joshi B, Park CW, Kim M-W, Swihart MT, Yoon WY, Yoon SS (2018e) Supersonically sprayed rGO−Zn2SnO4 composites as flexible, binder-free, scalable, and high-capacity lithium ion battery anodes. J Alloys Compd 766:331–340

    Article  Google Scholar 

  • Kim TG, Joshi B, Park CW, Samuel E, Kim M-W, Swihart MT, Yoon SS (2019) Supersonically sprayed iron oxide nanoparticles with atomic-layer-deposited ZnO/TiO2 layers for solar water splitting. J Alloys Compd 798:35–44

    Article  Google Scholar 

  • Kim T, Park C, Samuel EP, An S, Aldalbahi A, Alotaibi F, Yarin AL, Yoon SS (2021) Supersonically sprayed washable, wearable, stretchable, hydrophobic, and antibacterial rGO/AgNW fabric for multifunctional sensors and supercapacitors. ACS Appl Mater Interfaces 13:10013–10025

    Article  Google Scholar 

  • Kymakis E, Savva K, Stylianakis MM, Fotakis C, Stratakis E (2013) Flexible organic photovoltaic cells with in situ nonthermal photoreduction of spin-coated graphene oxide electrodes. Adv Funct Mater 23:2742–2749

    Article  Google Scholar 

  • Lee MW, Park JJ, Kim DY, Yoon SS, Kim HY, James SC, Chandra S, Coyle T (2011) Numerical studies on the effects of stagnation pressure and temperature on supersonic flow characteristics in cold spray applications. J Therm Spray Technol 20:1085–1097

    Article  Google Scholar 

  • Lee YH, Zhang XQ, Zhang W, Chang MT, Lin CT, Chang KD, Yu YC, Wang JTW, Chang CS, Li LJ (2012) Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv Mater 24:2320–2325

    Article  Google Scholar 

  • Lee JG, Kim DY, Kang B, Kim D, Al-Deyab SS, James SC, Yoon SS (2015a) Thin film metallization by supersonic spraying of copper and nickel nanoparticles on a silicon substrate. Comput Mater Sci 108:114–120

    Article  Google Scholar 

  • Lee JG, Kim DY, Kang B, Kim D, Song HE, Kim J, Jung W, Lee D, Al-Deyab SS, James SC, Yoon SS (2015b) Nickel–copper hybrid electrodes self-adhered onto a silicon wafer by supersonic cold-spray. Acta Mater 93:156–163

    Article  Google Scholar 

  • Lee JG, Kim DY, Mali MG, Al-Deyab SS, Swihart MT, Yoon SS (2015c) Supersonically blown nylon-6 nanofibers entangled with graphene flakes for water purification. Nanoscale 7:19027–19035

    Article  Google Scholar 

  • Lee KD, Park MJ, Kim D-Y, Kim SM, Kang B, Kim S, Kim H, Lee H-S, Kang Y, Yoon SS (2015d) Graphene quantum dot layers with energy-down-shift effect on crystalline-silicon solar cells. ACS Appl Mater Interfaces 7:19043–19049

    Article  Google Scholar 

  • Lee JG, Kim DY, Joshi BN, Lee JH, Lee T-K, Kim JS, Yang Dh, Kim WY, Al-Deyab SS, Yoon SS (2016a) Electrically insulative performances of ceramic and clay films deposited via supersonic spraying. J Therm Spray Technol 25:763–769

    Article  Google Scholar 

  • Lee JG, Kim DY, Lee JH, Kim MW, An S, Jo HS, Nervi C, Al-Deyab SS, Swihart MT, Yoon SS (2016b) Scalable binder-free supersonic cold spraying of nanotextured cupric oxide (CuO) films as efficient photocathodes. ACS Appl Mater Interfaces 8:15406–15414

    Article  Google Scholar 

  • Lee JG, An S, Kim TG, Kim MW, Jo HS, Swihart MT, Yarin AL, Yoon SS (2017a) Self-cleaning anticondensing glass via supersonic spraying of silver nanowires, silica, and polystyrene nanoparticles. ACS Appl Mater Interfaces 9:35325–35332

    Article  Google Scholar 

  • Lee JG, Joshi BN, Lee JH, Kim TG, Kim DY, Al-Deyab SS, Seong IW, Swihart MT, Yoon WY, Yoon SS (2017b) Stable high-capacity lithium ion battery anodes produced by supersonic spray deposition of hematite nanoparticles and self-healing reduced graphene oxide. Electrochim Acta 228:604–610

    Article  Google Scholar 

  • Lee JG, Joshi BN, Samuel E, An S, Swihart MT, Lee JS, Hwang YK, Chang JS, Yoon SS (2017c) Supersonically sprayed gas-and water-sensing MIL-100 (Fe) films. J Alloys Compd 722:996–1001

    Article  Google Scholar 

  • Lee JG, Lee J-H, An S, Kim DY, Kim TG, Al-Deyab SS, Yarin AL, Yoon SS (2017d) Highly flexible, stretchable, wearable, patternable and transparent heaters on complex 3D surfaces formed from supersonically sprayed silver nanowires. J Mater Chem A 5:6677–6685

    Article  Google Scholar 

  • Lee JG, Lee JH, An S, Yoon JY, Choi JW, Kang MG, Lee JI, Song HE, Al-Deyab SS, James SC (2017e) Effects of impact conditions on the electrical and mechanical properties of supersonic cold sprayed Cu–Ni electrodes. J Alloys Compd 695:3714–3721

    Article  Google Scholar 

  • Lee JG, Kim DY, Kim TG, Lee JH, Al-Deyab SS, Lee HW, Kim JS, Yang DH, Yarin AL, Yoon SS (2017f) Supersonically sprayed copper-nickel microparticles as flexible and printable thin-film high-temperature heaters. Adv Mater Interfaces 4:1700075

    Article  Google Scholar 

  • Lee JG, Kim DY, Lee JH, Sinha-Ray S, Yarin AL, Swihart MT, Kim D, Yoon SS (2017g) Production of flexible transparent conducting films of self-fused nanowires via one-step supersonic spraying. Adv Funct Mater 27:1602548

    Article  Google Scholar 

  • Li C-J, Li W-Y (2003) Deposition characteristics of titanium coating in cold spraying. Surf Coat Technol 167:278–283

    Article  Google Scholar 

  • Li W-Y, Li C-J (2005) Optimal design of a novel cold spray gun nozzle at a limited space. J Therm Spray Technol 14:391–396

    Article  Google Scholar 

  • Li C-J, Li W-Y, Wang Y-Y (2005) Formation of metastable phases in cold-sprayed soft metallic deposit. Surf Coat Technol 198:469–473

    Article  Google Scholar 

  • Li C-J, Li W-Y, Liao H (2006a) Examination of the critical velocity for deposition of particles in cold spraying. J Therm Spray Technol 15:212–222

    Article  Google Scholar 

  • Li W-Y, Liao H, Li C-J, Li G, Coddet C, Wang X (2006b) On high velocity impact of micro-sized metallic particles in cold spraying. Appl Surf Sci 253:2852–2862

    Article  Google Scholar 

  • Li C-J, Wang H-T, Zhang Q, Yang G-J, Li W-Y, Liao H (2010) Influence of spray materials and their surface oxidation on the critical velocity in cold spraying. J Therm Spray Technol 19:95–101

    Article  Google Scholar 

  • Li W, Guo X, Yu M, Liao H, Coddet C (2011) Investigation of impact behavior of cold-sprayed large annealed copper particles and characterization of coatings. J Therm Spray Technol 20:252–259

    Article  Google Scholar 

  • Li X, Feng Y, Li M, Li W, Wei H, Song D (2015a) Smart hybrids of Zn2GeO4 nanoparticles and ultrathin g-C3N4 layers: synergistic lithium storage and excellent electrochemical performance. Adv Funct Mater 25:6858–6866

    Article  Google Scholar 

  • Li X, Rui M, Song J, Shen Z, Zeng H (2015b) Carbon and graphene quantum dots for optoelectronic and energy devices: a review. Adv Funct Mater 25:4929–4947

    Article  Google Scholar 

  • Lopez-Varo P, Bertoluzzi L, Bisquert J, Alexe M, Coll M, Huang J, Jimenez-Tejada JA, Kirchartz T, Nechache R, Rosei F (2016) Physical aspects of ferroelectric semiconductors for photovoltaic solar energy conversion. Phys Rep 653:1–40

    Article  MathSciNet  Google Scholar 

  • Lupoi R, O’Neill W (2010) Deposition of metallic coatings on polymer surfaces using cold spray. Surf Coat Technol 205:2167–2173

    Article  Google Scholar 

  • Mattox DM (2010) Handbook of physical vapor deposition (PVD) Processing. William Andrew, Norwich

    Google Scholar 

  • Morgan R, Fox P, Pattison J, Sutcliffe C, O’Neill W (2004) Analysis of cold gas dynamically sprayed aluminium deposits. Mater Lett 58:1317–1320

    Article  Google Scholar 

  • Padture NP, Gell M, Jordan EH (2002) Thermal barrier coatings for gas-turbine engine applications. Sci 296:280–284

    Article  Google Scholar 

  • Pandey PA, Bell GR, Rourke JP, Sanchez AM, Elkin MD, Hickey BJ, Wilson NR (2011) Physical vapor deposition of metal nanoparticles on chemically modified graphene: observations on metal–graphene interactions. Small 7:3202–3210

    Article  Google Scholar 

  • Park JJ, Lee MW, Yoon SS, Kim HY, James SC, Heister SD, Chandra S, Yoon WH, Park DS, Ryu J (2011) Supersonic nozzle flow simulations for particle coating applications: effects of shockwaves, nozzle geometry, ambient pressure, and substrate location upon flow characteristics. J Therm Spray Technol 20:514–522

    Article  Google Scholar 

  • Park JJ, Lee JG, James SC, Al-Deyab SS, Ahn S, Yoon SS (2015) Thin-film metallization of CuInGaSe2 nanoparticles by supersonic kinetic spraying. Comput Mater Sci 101:66–76

    Article  Google Scholar 

  • Pattison J, Celotto S, Khan A, O’neill W (2008) Standoff distance and bow shock phenomena in the Cold Spray process. Surf Coat Technol 202:1443–1454

    Article  Google Scholar 

  • Raletz F, Vardelle M, Ezo’o G (2006) Critical particle velocity under cold spray conditions. Surf Coat Technol 201:1942–1947

    Article  Google Scholar 

  • Randall JP, Meador MAB, Jana SC (2011) Tailoring mechanical properties of aerogels for aerospace applications. ACS Appl Mater Interfaces 3:613–626

    Article  Google Scholar 

  • Samuel E, Lee JG, Joshi B, Kim TG, Kim MW, Seong IW, Yoon WY, Yoon SS (2017) Supersonic cold spraying of titania nanoparticles on reduced graphene oxide for lithium ion battery anodes. J Alloys Compd 715:161–169

    Article  Google Scholar 

  • Sarakinos K, Alami J, Konstantinidis S (2010) High power pulsed magnetron sputtering: a review on scientific and engineering state of the art. Surf Coat Technol 204:1661–1684

    Article  Google Scholar 

  • Schmidt T, Gärtner F, Assadi H, Kreye H (2006a) Development of a generalized parameter window for cold spray deposition. Acta Mater 54:729–742

    Article  Google Scholar 

  • Schmidt T, Gaertner F, Kreye H (2006b) New developments in cold spray based on higher gas and particle temperatures. J Therm Spray Technol 15:488–494

    Article  Google Scholar 

  • Schmidt T, Assadi H, Gärtner F, Richter H, Stoltenhoff T, Kreye H, Klassen T (2009) From particle acceleration to impact and bonding in cold spraying. J Therm Spray Technol 18:794

    Article  Google Scholar 

  • Scott J (2007) Applications of modern ferroelectrics. Science 315:954–959

    Article  Google Scholar 

  • Shekhah O, Liu J, Fischer R, Wöll C (2011) MOF thin films: existing and future applications. Chem Soc Rev 40:1081–1106

    Article  Google Scholar 

  • Shi F, Wang L, Liu J (2006) Synthesis and characterization of silica aerogels by a novel fast ambient pressure drying process. Mater Lett 60:3718–3722

    Article  Google Scholar 

  • Sinha-Ray S, Lee MW, Sinha-Ray S, An S, Pourdeyhimi B, Yoon SS, Yarin AL (2013) Supersonic nanoblowing: a new ultra-stiff phase of nylon 6 in 20–50 nm confinement. J Mater Chem C 1:3491–3498

    Article  Google Scholar 

  • Stoltenhoff T, Kreye H, Richter H (2002) An analysis of the cold spray process and its coatings. J Therm Spray Technol 11:542–550

    Article  Google Scholar 

  • Stoltenhoff T, Borchers C, Gärtner F, Kreye H (2006) Microstructures and key properties of cold-sprayed and thermally sprayed copper coatings. Surf Coat Technol 200:4947–4960

    Article  Google Scholar 

  • Sun DM, Liu C, Ren WC, Cheng HM (2013) A review of carbon nanotube-and graphene-based flexible thin-film transistors. Small 9:1188–1205

    Article  Google Scholar 

  • Tan JC, Furman JD, Cheetham AK (2009) Relating mechanical properties and chemical bonding in an inorganic− organic framework material: a single− crystal nanoindentation study. J Am Chem Soc 131:14252–14254

    Article  Google Scholar 

  • Van Steenkiste T, Smith J (2004) Evaluation of coatings produced via kinetic and cold spray processes. J Therm Spray Technol 13:274–282

    Article  Google Scholar 

  • Villafuerte J (2015) Modern cold spray: materials, process, and applications. Springer International Publishing, Cham

    Book  Google Scholar 

  • Wang G, Wen Z, Yang Y-E, Yin J, Kong W, Li S, Sun J, Ji S (2018) Ultra-long life Si@ rGO/gC3N4 with a multiply synergetic effect as an anode material for lithium-ion batteries. J Mater Chem A 6:7557–7565

    Article  Google Scholar 

  • Xu F, Zhu Y (2012) Highly conductive and stretchable silver nanowire conductors. Adv Mater 24:5117–5122

    Article  Google Scholar 

  • Ye L, Yong K-T, Liu L, Roy I, Hu R, Zhu J, Cai H, Law W-C, Liu J, Wang K, Liu J, Liu Y, Hu Y, Zhang X, Swihart MT, Prasad PN (2012) A pilot study in non-human primates shows no adverse response to intravenous injection of quantum dots. Nat Nanotech 7:453

    Article  Google Scholar 

  • Yoon H, Kim M-w, Kim H, Kim D-Y, An S, Lee J-G, Joshi BN, Jo HS, Choi J, Al-Deyab SS (2016) Efficient heat removal via thorny devil nanofiber, silver nanowire, and graphene nanotextured surfaces. Int J Heat Mass Transfer 101:198–204

    Article  Google Scholar 

  • Yu Z, Zhang Q, Li L, Chen Q, Niu X, Liu J, Pei Q (2011) Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes. Adv Mater 23:664–668

    Article  Google Scholar 

  • Zhang Y, Zhang L, Zhou C (2013) Review of chemical vapor deposition of graphene and related applications. Acc Chem Res 46:2329–2339

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government NRF-2020R1A5A1018153, NRF-2021R1A2C2010530, 2020K1A3A1A74114847, and NRF-2016M1A2A2936760.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Wook Lee or Sam S. Yoon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, S., Bang, BH., Lee, M.W. et al. Review of recent progress in the supersonic cold-spraying technique with solid particles and liquid suspensions. Exp Fluids 62, 145 (2021). https://doi.org/10.1007/s00348-021-03247-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-021-03247-y

Navigation