Skip to main content
Log in

Scaling analysis of the Plateau–Rayleigh instability in thin film flow down a fiber

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

A thin viscous film flowing down a fiber is subject to Plateau–Rayleigh instability leading to temporal beading patterns, characterized by the bead spacing \(S_b\), bead velocity \(V_b\), and bead diameter \(D_b\). In this study, experiments are performed to document the beading pattern as it depends upon the flow rate Q, nozzle diameter \(D_n\), fiber diameter \(D_f\) and liquid viscosity \(\mu\). The large experimental data set collapses upon scaling with the Nusselt solution for gravity-driven thin film flow with viscous time scale showing the dimensionless bead diameter scales with the capillary number. The dimensionless bead frequency and bead spacing are similarly related and characterize the dispersion relationship.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bostwick J, Steen P (2010) Stability of constrained cylindrical interfaces and the torus lift of plateau-rayleigh. J Fluid Mech 647:201

    Article  MathSciNet  Google Scholar 

  • Bostwick J, Steen P (2015) Liquid-bridge shape stability by energy bounding. IMA J Appl Math 80(6):1759–1775

    Article  MathSciNet  Google Scholar 

  • Bostwick J, Steen P (2018) Static rivulet instabilities: varicose and sinuous modes. J Fluid Mech 837:819

    Article  MathSciNet  Google Scholar 

  • Carroll B (1986) Equilibrium conformations of liquid drops on thin cylinders under forces of capillarity. A theory for the roll-up process. Langmuir 2(2):248–250

    Article  Google Scholar 

  • Carroll BJ (1984) The equilibrium of liquid drops on smooth and rough circular cylinders. J Coll Interface Sci 97(1):195–200

    Article  Google Scholar 

  • Chinju H, Uchiyama K, Mori YH (2000) “string-of-beads’’ flow of liquids on vertical wires for gas absorption. AIChE J 46(5):937–945

    Article  Google Scholar 

  • Duprat C, Ruyer-Quil C, Kalliadasis S, Giorgiutti-Dauphiné F (2007) Absolute and convective instabilities of a viscous film flowing down a vertical fiber. Phys Rev Lett 98(24):244502

    Article  Google Scholar 

  • Duprat C, Ruyer-Quil C, Giorgiutti-Dauphiné F (2009) Spatial evolution of a film flowing down a fiber. Phys Fluids 21(4):042109

    Article  Google Scholar 

  • Frenkel A (1992) Nonlinear theory of strongly undulating thin films flowing down vertical cylinders. EPL (Europhys Lett) 18(7):583

    Article  Google Scholar 

  • Gabbard CT, Bostwick JB (2021) Asymmetric instability in thin-film flow down a fiber. Phys Rev Fluids 6(3):034005

    Article  Google Scholar 

  • Gallaire F, Brun PT (2017) Fluid dynamic instabilities: theory and application to pattern forming in complex media. Philos Trans Royal Soc A: Math, Phys Eng Sci 375(2093):20160155

    Article  MathSciNet  Google Scholar 

  • Gilet T, Terwagne D, Vandewalle N (2009) Digital microfluidics on a wire. Appl Phys Lett 95(1):014106

    Article  Google Scholar 

  • Goren SL (1962) The instability of an annular thread of fluid. J Fluid Mech 12(2):309–319

    Article  MathSciNet  Google Scholar 

  • Goucher F, Ward H (1922) The thickness of liquid films formed on solid surfaces under dynamic conditions. Phil Mag 44:1002–1014

    Article  Google Scholar 

  • Grünig J, Lyagin E, Horn S, Skale T, Kraume M (2012) Mass transfer characteristics of liquid films flowing down a vertical wire in a counter current gas flow. Chem Eng Sci 69(1):329–339

    Article  Google Scholar 

  • Haefner S, Benzaquen M, Bäumchen O, Salez T, Peters R, McGraw JD, Jacobs K, Raphaël E, Dalnoki-Veress K (2015) Influence of slip on the plateau-rayleigh instability on a fibre. Nat Commun 6(1):1–6

    Article  Google Scholar 

  • Hosseini S, Alizadeh R, Fatehifar E, Alizadehdakhel A (2014) Simulation of gas absorption into string-of-beads liquid flow with chemical reaction. Heat Mass Transfer 50(10):1393–1403

    Article  Google Scholar 

  • Javadi A, Eggers J, Bonn D, Habibi M, Ribe N (2013) Delayed capillary breakup of falling viscous jets. Phys Rev Lett 110(14):144501

    Article  Google Scholar 

  • Ji H, Sadeghpour A, Ju YS, Bertozzi AL (2020) Modeling film flows down a fibre influenced by nozzle geometry. arXiv preprint arXiv:200709582

  • Kalliadasis S, Chang HC (1994) Drop formation during coating of vertical fibres. J Fluid Mech 261:135–168

    Article  Google Scholar 

  • Kapitza F, Kapitza S (1964) Experimental study of undulatory flow conditions (1949). Collected Papers of PL Kapitza pp 690–709

  • Kliakhandler I, Davis SH, Bankoff S (2001) Viscous beads on vertical fibre. J Fluid Mech 429:381

    Article  Google Scholar 

  • Lin S, Liu W (1975) Instability of film coating of wires and tubes. AIChE J 21(4):775–782

    Article  Google Scholar 

  • Lowry BJ, Steen PH (1995) Capillary surfaces: stability from families of equilibria with application to the liquid bridge. Proc Royal Soc Lond Series A: Math Phys Sci 449(1937):411–439

    Article  Google Scholar 

  • Mashayek F, Ashgriz N (1995) Instability of liquid coatings on cylindrical surfaces. Phys Fluids 7(9):2143–2153

    Article  Google Scholar 

  • McHale G, Newton M (2002) Global geometry and the equilibrium shapes of liquid drops on fibers. Coll Surf A: Physicochem Eng Asp 206(1–3):79–86

    Article  Google Scholar 

  • McHale G, Rowan SM, Newton M, Käb N (1999) Estimation of contact angles on fibers. J Adhes Sci Technol 13(12):1457–1469

    Article  Google Scholar 

  • McHale G, Newton M, Carroll B (2001) The shape and stability of small liquid drops on fibers. Oil Gas Sci Technol 56(1):47–54

    Article  Google Scholar 

  • Plateau J (1873) Statique experimentale et theorique des liquides soumis aux seules forces moleculaires. Gauthier-Villars 2

  • Quéré D (1990) Thin films flowing on vertical fibers. EPL (Europhys Lett) 13(8):721

    Article  Google Scholar 

  • Quéré D (1999) Fluid coating on a fiber. Ann Rev Fluid Mech 31(1):347–384

    Article  Google Scholar 

  • Rayleigh L (1878) On the instability of jets. Proc Lond Math Soc 1(1):4–13

    Article  MathSciNet  Google Scholar 

  • Ruyer-Quil C, Kalliadasis S (2012) Wavy regimes of film flow down a fiber. Phys Rev E 85(4):046302

    Article  Google Scholar 

  • Sadeghpour A, Zeng Z, Ju YS (2017) Effects of nozzle geometry on the fluid dynamics of thin liquid films flowing down vertical strings in the rayleigh-plateau regime. Langmuir 33(25):6292–6299

    Article  Google Scholar 

  • Sadeghpour A, Zeng Z, Ji H, Ebrahimi ND, Bertozzi A, Ju Y (2019) Water vapor capturing using an array of traveling liquid beads for desalination and water treatment. Sci Adv 5(4):eaav7662

    Article  Google Scholar 

  • Shkadov VY (1967) Wave flow regimes of a thin layer of viscous fluid subject to gravity. Fluid Dyn 2(1):29–34

    Article  MathSciNet  Google Scholar 

  • Smolka LB, North J, Guerra BK (2008) Dynamics of free surface perturbations along an annular viscous film. Phys Rev E 77(3):036301

    Article  Google Scholar 

  • Tu C, Ellen C (1986) Stability of liquid coating in the jet stripping process. In: 9th Australasian Fluid Mechanics Conference

  • Weinstein SJ, Ruschak KJ (2004) Coating flows. Annu Rev Fluid Mech 36:29–53

    Article  Google Scholar 

  • Zeng Z, Sadeghpour A, Warrier G, Ju YS (2017) Experimental study of heat transfer between thin liquid films flowing down a vertical string in the rayleigh-plateau instability regime and a counterflowing gas stream. Int J Heat Mass Transf 108:830–840

    Article  Google Scholar 

  • Zeng Z, Sadeghpour A, Ju YS (2018) Thermohydraulic characteristics of a multi-string direct-contact heat exchanger. Int J Heat Mass Transf 126:536–544

    Article  Google Scholar 

Download references

Acknowledgements

JBB acknowledges support from NSF Grants CMMI-1935590.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua B. Bostwick.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabbard, C.T., Bostwick, J.B. Scaling analysis of the Plateau–Rayleigh instability in thin film flow down a fiber. Exp Fluids 62, 141 (2021). https://doi.org/10.1007/s00348-021-03234-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-021-03234-3

Navigation