Skip to main content
Log in

Investigating the haemodynamics of myocardial bridging

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Myocardial bridging is a congenital anomaly wherein a segment of a coronary artery passes under a ‘bridge’ of heart muscle rather than resting upon the heart’s surface. Although it is usually benign, myocardial bridging has been associated with adverse clinical events including ischaemia, arrhythmia and sudden death. Moreover, there is a tendency for atherosclerotic lesions to develop upstream of the bridge. These lesions may be the result of adverse fluid dynamic phenomena induced by the periodic compression of the artery by the overlying myocardial bridge. It is not possible to visualise these phenomena in vivo, and in this study we present an in vitro model capable of replicating the bridging conditions. This model is comprised of a pressure-measuring guide wire and catheter, a piston pump, a scaled artery model, and a ‘myocardial bridging mechanism’ which periodically compresses the artery model. A proportional-integral-derivative (PID) controller allowed the piston pump to recreate a patient-specific aortic pressure waveform upstream of the occluded artery model segment for each study. Stationary occlusions—achieved by placing 3D printed ‘stenosis inserts’ within the artery model—induced globally reduced pressures downstream of the stenosis when compared against the upstream pressure waveform. Conversely, the pressures downstream of the dynamic stenoses generated by the bridging mechanism closely matched the upstream pressures at all stages of the cardiac cycle except at the end of systole. This divergent pressure behaviour at the end of systole was similarly observed in vivo within a patient with a myocardial bridge. Flow visualisation using a laser sheet enabled dynamic flow structures to be observed, including recirculating flow regions, which may be precursors to arterial dysfunction.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahmadi A, Stone GW, Leipsic J, Serruys PW, Shaw L, Hecht H, Wong G, Nørgaard BL, O’Gara PT, Chandrashekhar Y, Narula J (2016) Association of coronary stenosis and plaque morphology with fractional flow reserve and outcomes. JAMA cardiol 1(3):350–357

    Article  Google Scholar 

  • Ahmed SA, Giddens DP (1984) Pulsatile poststenotic flow studies with laser doppler anemometry. J Biomech 17(9):695–705

    Article  Google Scholar 

  • Angelini P, Trivellato M, Donis J, Leachman RD (1983) Myocardial bridges: a review. Prog Cardiovasc Dis 26(1):75–88

    Article  Google Scholar 

  • Baltgaile G (2012) Arterial wall dynamics. Perspect Med 1(1–12):146–151

    Article  Google Scholar 

  • Buchanan CF, Verbridge SS, Vlachos PP, Rylander MN (2014) Flow shear stress regulates endothelial barrier function and expression of angiogenic factors in a 3d microfluidic tumor vascular model. Cell Adhesion Migrat 8(5):517–524

    Article  Google Scholar 

  • Chatzizisis YS, Giannoglou GD (2009) Myocardial bridges are free from atherosclerosis: overview of the underlying mechanisms. Can J Cardiol 25(4):219–222

    Article  Google Scholar 

  • Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL, Stone PH (2007) Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J Am Coll Cardiol 49(25):2379–2393

    Article  Google Scholar 

  • Chistiakov DA, Orekhov AN, Bobryshev YV (2017) Effects of shear stress on endothelial cells: go with the flow. Acta Physiol 219(2):382–408

    Article  Google Scholar 

  • Chodzyński KJ, Boudjeltia KZ, Lalmand J, Aminian A, Vanhamme L, de Sousa DR, Gremmo S, Bricteux L, Renotte C, Courbebaisse G et al. (2015) An in vitro test bench reproducing coronary blood flow signals. Biomed Eng online 14(1):77

    Article  Google Scholar 

  • Denardo SJ, Talbot L, Hargrave VK, Selfridge AR, Ports TA, Yock PG (1997) Accuracy of doppler catheter measurements: effect of inhomogeneous beam power distribution on mean and peak velocity. J Am Coll Cardiol 29(2):283–292

    Article  Google Scholar 

  • Ding H, Chen Z, Shen L, Xu M, Zhou Y, Xu S, Zeng Y (2009) Heart pump system in “heart–mural coronary artery–myocardial bridge’’ simulative device. Australasian Phys Eng Sci Med 32(2):105

    Article  Google Scholar 

  • Ding H, Yang Q, Shang K, Lan H, Lv J, Liu Z, Liu Y, Sheng L, Zeng Y (2017) Estimation of shear stress by using a myocardial bridge-mural coronary artery simulating device. Cardiol Journal 24(5):530–538

    Article  Google Scholar 

  • Doucette JW, Corl PD, Payne HM, Flynn AE, Goto M, Nassi M, Segal J (1992) Validation of a doppler guide wire for intravascular measurement of coronary artery flow velocity. Circulation 85(5):1899–1911

    Article  Google Scholar 

  • Ernst A, Bulum J, Šeparović-Hanževački J, Benčić ML, Strozzi M (2013) Five-year angiographic and clinical follow-up of patients with drug-eluting stent implantation for symptomatic myocardial bridging in absence of coronary atherosclerotic disease. J invasive cardiol 25(11):586

    Google Scholar 

  • Feher J (2012) 5.4 - the heart as a pump. In: Feher J (ed) Quantitative Human Physiology (Second Edition), second edition edn, Academic Press, Boston, pp 516–524, https://doi.org/10.1016/B978-0-12-800883-6.00047-1, http://www.sciencedirect.com/science/article/pii/B9780128008836000471

  • Ge J, Jeremias A, Rupp A, Abels M, Baumgart D, Liu F, Haude M, Görge G, Von Birgelen C, Sack S, Erbel R (1999) New signs characteristic of myocardial bridging demonstrated by intracoronary ultrasound and doppler. Eur Heart J 20(23):1707–1716

    Article  Google Scholar 

  • Griffith MD, Leweke T, Thompson MC, Hourigan K (2013) Effect of small asymmetries on axisymmetric stenotic flow. J Fluid Mech 721

  • Hennigan B, Oldroyd KG, Berry C, Johnson N, McClure J, McCartney P, McEntegart MB, Eteiba H, Petrie MC, Rocchiccioli P, Good R (2016) Discordance between resting and hyperemic indices of coronary stenosis severity: the verify 2 study (a comparative study of resting coronary pressure gradient, instantaneous wave-free ratio and fractional flow reserve in an unselected population referred for invasive angiography). Circulat Cardiovas Interven 9(11):e004016

    Article  Google Scholar 

  • Hong H, Wang MS, Liu Q, Shi JC, Ren HM, Xu ZM (2014) Angiographically evident atherosclerotic stenosis associated with myocardial bridging and risk factors for the artery stenosis located proximally to myocardial bridging. Anatolian Journal of Cardiology/Anadolu Kardiyoloji Dergisi 14(1)

  • Hostiuc S, Marinescu M, Costescu M, Alua M, Negoi I (2018) Cardiac telocytes. from basic science to cardiac diseases. ii. acute myocardial infarction. Ann Anatomy-Anatomischer Anzeiger 218:83–87

    Article  Google Scholar 

  • Ishii T, Asuwa N, Masuda S, Ishikawa Y, Kiguchi H, Shimada K (1991) Atherosclerosis suppression in the left anterior descending coronary artery by the presence of a myocardial bridge: an ultrastructural study. Anatolian J Cardiol/Anadolu Kardiyoloji Dergisi, Inc 4(4):424–431

    Google Scholar 

  • Jain K (2020) Transition to turbulence in an oscillatory flow through stenosis. Biomech Model Mechanobiol 19(1):113–131

    Article  Google Scholar 

  • Jenni R, Büchi M, Zweifel HJ, Ritter M (1998) Impact of doppler guidewire size and flow rates on intravascular velocity profiles. Cathet Cardiovasc Diagn 45(1):96–100

    Article  Google Scholar 

  • Ji Q, Shen J, Xia L, Ding W, Wang C (2020) Surgical treatment of symptomatic left anterior descending myocardial bridges: myotomy vs. bypass surgery. Surg Today pp 1–8

  • Karimi A, Navidbakhsh M, Shojaei A, Faghihi S (2013) Measurement of the uniaxial mechanical properties of healthy and atherosclerotic human coronary arteries. Mater Sci Eng, C 33(5):2550–2554

    Article  Google Scholar 

  • Lee MS, Chen CH (2015) Myocardial bridging: an up-to-date review. J invasive cardiol 27(11):521

    Google Scholar 

  • Mohammadi H, Bahramian F (2009) Boundary conditions in simulation of stenosed coronary arteries. Cardiovasc Eng 9(3):83–91

    Article  Google Scholar 

  • Möhlenkamp S, Hort W, Ge J, Erbel R (2002) Update on myocardial bridging. Circulation 106(20):2616–2622

    Article  Google Scholar 

  • Mundi S, Massaro M, Scoditti E, Carluccio MA, van Hinsbergh VW, Iruela-Arispe ML, De Caterina R (2017) Endothelial permeability, ldl deposition, and cardiovascular risk factors–a review. Cardiovasc Res 114(1):35–52

    Article  Google Scholar 

  • Najjari MR, Plesniak MW (2017) Pid controller design to generate pulsatile flow rate for in vitro experimental studies of physiological flows. Biomed Eng Lett 7(4):339–344

    Article  Google Scholar 

  • Onan B, Onan IS, Bakir I (2012) Left anterior descending coronary artery muscular bridge: lengthy and complete. Tex Heart Inst J 39(4):598

    Google Scholar 

  • Pijls NH, van Son JA, Kirkeeide RL, De Bruyne B, Gould K (1993) Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty. Circulation 87(4):1354–1367

    Article  Google Scholar 

  • Plewes D, Urchuk S, Kim S, Soutar I (1995) An mr compatible flow simulator for intravascular pressure simulation. Med Phys 22(7):1111–1115

    Article  Google Scholar 

  • Ripa C, Melatini MC, Olivieri F, Antonicelli R (2007) Myocardial bridging: A’forgotten’cause of acute coronary syndrome-a case report. Int J Angiol 16(03):115–118

    Article  Google Scholar 

  • Srinivasan M, Prasad A (2011) Metal fatigue in myocardial bridges: stent fracture limits the efficacy of drug-eluting stents. J Invasive Cardiol 23(6):E150–E152

    Google Scholar 

  • Stouffer GA (2017) Cardiovascular hemodynamics for the clinician. Wiley Online Library

    Book  Google Scholar 

  • Tandar A, Whisenant BK, Michaels AD (2008) Stent fracture following stenting of a myocardial bridge: report of two cases. Catheter Cardiovasc Interv 71(2):191–196

    Article  Google Scholar 

  • Tarantini G, Migliore F, Cademartiri F, Fraccaro C, Iliceto S (2016) Left anterior descending artery myocardial bridging: a clinical approach. J Am Coll Cardiol 68(25):2887–2899

    Article  Google Scholar 

  • Timmins LH, Molony DS, Eshtehardi P, McDaniel MC, Oshinski JN, Giddens DP, Samady H (2017) Oscillatory wall shear stress is a dominant flow characteristic affecting lesion progression patterns and plaque vulnerability in patients with coronary artery disease. J R Soc Interface 14(127):20160972

    Article  Google Scholar 

  • Tonino PA, De Bruyne B, Pijls NH, Siebert U, Ikeno F, vant Veer M, Klauss V, Manoharan G, Engstrøm T, Oldroyd KG, Ver Lee PN (2009) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 360(3):213–224

    Article  Google Scholar 

  • Tonino PA, Fearon WF, De Bruyne B, Oldroyd KG, Leesar MA, Ver Lee PN, MacCarthy PA, Van’t Veer M, Pijls NH (2010) Angiographic versus functional severity of coronary artery stenoses in the fame study: fractional flow reserve versus angiography in multivessel evaluation. J Am Coll Cardiol 55(25):2816–2821

    Article  Google Scholar 

  • Toth GG, Johnson NP, Jeremias A, Pellicano M, Vranckx P, Fearon WF, Barbato E, Kern MJ, Pijls NH, De Bruyne B (2016) Standardization of fractional flow reserve measurements. J Am Coll Cardiol 68(7):742–753

    Article  Google Scholar 

  • Ural MN, Eren F, Inanir NT, Eren B, Vojtisek T, Gürses MS (2015) Death due to myocardial bridging. Maedica 10(2):143

    Google Scholar 

  • VanderLaan PA, Reardon CA, Getz GS (2004) Site specificity of atherosclerosis: site-selective responses to atherosclerotic modulators. Arterioscler Thromb Vasc Biol 24(1):12–22

    Article  Google Scholar 

  • Vétel J, Garon A, Pelletier D, Farinas M (2008) Asymmetry and transition to turbulence in a smooth axisymmetric constriction. J Fluid Mech 607:351

    Article  MATH  Google Scholar 

  • Zoghi M, Duygu H, Nalbantgil S, Kirilmaz B, Turk U, Ozerkan F, Akilli A, Akin M, Turkoglu C (2006) Impaired endothelial function in patients with myocardial bridge. Echocardiography 23(7):577–581

    Article  Google Scholar 

Download references

Acknowledgements

We would like to extend our gratitude to all of the technical staff at UNSW Sydney who were involved in the design and manufacture of the experimental model, particularly Stephen Kuhle, Vincenzo Carnevale, Mark Baldry and Martyn Sherriff. Thank you, also, to Ashkan Javadzadegan and Abouzar Moshfegh for their help with the patient data processing and collection. Finally, our gratitude to the patient, without whom the experimental model could not have been validated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. S. Vijayaratnam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 2,285 kb)

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 2,785kb)

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 1,888kb)

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 1,599 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayaratnam, P.R.S., Fulker, D., Kim, Y.C. et al. Investigating the haemodynamics of myocardial bridging. Exp Fluids 62, 86 (2021). https://doi.org/10.1007/s00348-021-03185-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-021-03185-9

Navigation