Skip to main content
Log in

Study of chemoconvection by PIV at neutralization reaction under normal and modulated gravity

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

An experimental investigation of chemically triggered convection is carried out. A two-layer system of miscible reactive fluids—the neutralization reaction between an acid and a base—is considered in a vertical Hele-Shaw cell. This system is subject to the action of gravity and vertical translational vibrations (modulated gravity). During the reaction, a less dense salt solution emerges in the reaction zone, thus triggering the buoyancy-driven convection in the form of concentration plumes rising in the upper layer. The particle image velocimetry is used as the method of study. The considered system is non-stationary, and a technique is developed for the processing of a long series of images registered during experiments. The evolution of the flow structures and of the convection intensity is analyzed. In the considered range of experimental parameters the vibrations slightly slow down the convection.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Almarcha C, Trevelyan PMJ, Grosfils P, De Wit A (2010) Chemically driven hydrodynamic instabilities. Phys Rev Lett 104:044501. https://doi.org/10.1103/PhysRevLett.104.044501

    Article  Google Scholar 

  • Almarcha C, R’Honi Y, De Decker Y, Trevelyan PMJ, Eckert K, De Wit A (2011) Convective mixing induced by acid–base reactions. J Phys Chem B 115:9739. https://doi.org/10.1021/jp202201e

    Article  Google Scholar 

  • Belk M, Kostarev K, Volpert V, Yudina T (2003) Frontal photopolymerization with convection. J Phys Chem B 107:10292

    Article  Google Scholar 

  • Benielli D, Sommeria J (1998) Excitation and breaking of internal gravity waves by parametric instability. J Fluid Mech 374:117

    Article  MathSciNet  Google Scholar 

  • Bratsun DA, Mosheva EA (2018) Adaptive micromixer based on the solutocapillary Marangoni effect in a continuous-flow microreactor. Comput Contin Mech 11:302. https://doi.org/10.7242/1999-6691/2018.11.3.23

    Article  Google Scholar 

  • Bratsun D, Siraev R (2020) Controlling mass transfer in a continuous-flow microreactor with a variable wall relief. Int Commun Heat Mass Transf 113:104522

    Article  Google Scholar 

  • Bratsun D, Shi Y, Eckert K, De Wit A (2005) Control of chemo-hydrodynamic pattern formation by external localized cooling. EPL (Europhys Lett) 69(5):746

    Article  Google Scholar 

  • Bratsun D, Kostarev K, Mizev A, Mosheva E (2015) Concentration-dependent diffusion instability in reactive miscible fluids. Phys Rev E 92(1):011003

    Article  Google Scholar 

  • Bratsun DA, Stepkina OS, Kostarev KG, Mizev AI, Mosheva EA (2016) Development of concentration-dependent diffusion instability in reactive miscible fluids under influence of constant or variable inertia. Microgravity Sci Technol 28:575

    Article  Google Scholar 

  • Bratsun D, Mizev A, Mosheva E, Kostarev K (2017) Shock-wave-like structures induced by an exothermic neutralization reaction in miscible fluids. Phys Rev E 96(5):053106

    Article  Google Scholar 

  • Bratsun D, Kostarev K, Mizev A, Aland S, Mokbel M, Schwarzenberger K, Eckert K (2018) Adaptive micromixer based on the solutocapillary Marangoni effect in a continuous-flow microreactor. Micromachines 9(11):600

    Article  Google Scholar 

  • Carbo RM, Smith RWM, Poese ME (2014) A computational model for the dynamic stabilization of Rayleigh–Bénard convection in a cubic cavity. J Acoust Soc Am 135:654. https://doi.org/10.1121/1.4861360

    Article  Google Scholar 

  • Dupeyrat M, Nakache E (1978) Direct conversion of chemical energy into mechanical energy at an oil water interface. Bioelectrochem Bioenerget 5(1):134

    Article  Google Scholar 

  • Eckert K, Rongy L, De Wit A (2012) \(A+B\rightarrow C\) reaction fronts in Hele-Shaw cells under modulated gravitational acceleration. Phys Chem Chem Phys 14(20):7337

    Article  Google Scholar 

  • Evans M, Uri N (1949) Polymerization in aqueous solution. Nature 164:404

    Article  Google Scholar 

  • Gaponenko Y, Torregrosa M, Yasnou V, Mialdun A, Shevtsova V (2015) Dynamics of the interface between miscible liquids subjected to horizontal vibration. J Fluid Mech 784:342. https://doi.org/10.1017/jfm.2015.586

    Article  Google Scholar 

  • Gel’fgat AY (1991) Development and instability of steady convective flows in a square cavity heated from below and a field of vertically directed vibrational forces. Fluid Dyn 26:165

    Article  Google Scholar 

  • Gelfgat AY (1999) Different modes of Rayleigh–Bénard instability in two- and three-dimensional rectangular enclosures. J Comput Phys 156:300. https://doi.org/10.1006/jcph.1999.6363

    Article  MATH  Google Scholar 

  • Gershuni G, Lubimov D (1998) Thermal vibrational convection. Wiley, New York

    Google Scholar 

  • Hoffmann FM, Wolf GH (1974) Excitation of parametric instabilities in statically stable and unstable fluid interfaces. J Appl Phys 45:3859

    Article  Google Scholar 

  • Horváth D, Budroni MA, Bába P, Rongy L, De Wit A, Eckert K, Hauser MJ, Tóth Á (2014) Convective dynamics of traveling autocatalytic fronts in a modulated gravity field. Phys Chem Chem Phys 16(47):26279

    Article  Google Scholar 

  • Ivanova AA, Kozlov VG (2002) Sand-fluid interface under vibration. Fluid Dyn 37:277

    Article  Google Scholar 

  • Ivanova AA, Kozlov VG, Evesque P (2001) Interface dynamics of immiscible fluids under horizontal vibration. Fluid Dyn 36:362

    Article  Google Scholar 

  • Jalikop S, Juel A (2009) Steep capillary-gravity waves in oscillatory shear-driven flows. J Fluid Mech 640:131

    Article  MathSciNet  Google Scholar 

  • Jensen KF (2001) Microreaction engineering—is small better? Chem Eng Sci 56:293

    Article  Google Scholar 

  • Loodts V, Thomas C, Rongy L, De Wit A (2014) Control of convective dissolution by chemical reactions: general classification and application to CO2 dissolution in reactive aqueous solutions. Phys Rev Lett 113(11):114501

    Article  Google Scholar 

  • Nevolin VG (1977) Parametric excitation of waves at an interface. Fluid Dyn 12:302

    Article  Google Scholar 

  • Nikolsky BN (1965) Spravochnik Khimika (Chemist’s handbook), vol. 3, 2nd edn. Khimiya Publishing House, Moscow

    Google Scholar 

  • Nisancioglu K, Newman J (1973) Diffusion in aqueous nitric acid solutions. AIChE J 19(4):797. https://doi.org/10.1002/aic.690190417

    Article  Google Scholar 

  • Pringle SE, Glass RJ, Cooper CA (2002) Double-diffusive finger convection in a Hele-Shaw cell: an experiment exploring the evolution of concentration fields, length scales and mass transfer. Transp Porous Media 47:195

    Article  Google Scholar 

  • Sekerzh-Zen’kovitch SY (1983) Parametric resonance in a stratified liquid in a container undergoing vertical vibrations. Sov Phys Dokl 28:445

    MATH  Google Scholar 

  • Shi Y, Eckert K (2008) A novel Hele-Shaw cell design for the analysis of hydrodynamic instabilities in liquid–liquid systems. Chem Eng Sci 63:3560. https://doi.org/10.1016/j.ces.2008.04.013

    Article  Google Scholar 

  • Shkadinskaya G, Shkadinskii K (2014) Stabilization of the front of polymerization of composite materials in a plug-flow reactor. Russ J Phys Chem B 8(2):221

    Article  Google Scholar 

  • Swaminathan A, Garrett SL, Poese ME, Smith RWM (2018) Dynamic stabilization of the Rayleigh–Bénard instability by acceleration modulation. J Acoust Soc Am 144:2334. https://doi.org/10.1121/1.3384917

    Article  Google Scholar 

  • Thielicke W, Stamhuis EJ (2014) PIVlab—Towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. J Open Res Softw 2:e30. https://doi.org/10.5334/jors.bl

    Article  Google Scholar 

  • Trevelyan PMJ, Almarcha C, De Wit A (2015) Buoyancy-driven instabilities around miscible \(A+B\rightarrow C\) reaction fronts: a general classification. Phys Rev E 91:023001

    Article  Google Scholar 

  • Vladimirov V (1981) Parametric resonance in a stratified fluid. J Appl Mech Tech Phys 22:886

    Article  Google Scholar 

  • Westerweel J, Scarano F (2005) Universal outlier detection for PIV data. Exp Fluids 39:1096. https://doi.org/10.1007/s00348-005-0016-6

    Article  Google Scholar 

  • Wolf GH (1969) The dynamic stabilization of the Rayleigh–Taylor instability and the corresponding dynamic equilibrium. Z Phys B 227:291

    Google Scholar 

  • Wolf GH (1970) In: AIP conference proceedings. Number 1. Feedback and dynamic control of plasmas. American Institute of Physics, pp 293–304

  • Wolf GH (2018) Dynamic stabilization of the Rayleigh–Taylor instability of miscible liquids and the related “frozen waves”. Phys Fluids 30:021701. https://doi.org/10.1063/1.5017846

    Article  Google Scholar 

  • Wylock C, Rednikov A, Haut B, Colinet P (2014) Nonmonotonic Rayleigh–Taylor instabilities driven by gas–liquid CO2 chemisorption. J Phys Chem B 118(38):11323

    Article  Google Scholar 

Download references

Funding

The work was financially supported by the Russian Science Foundation (Grant 19-11-00133).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolai Kozlov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (VLC 72695 KB)

Supplementary file2 (VLC 39362 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosheva, E., Kozlov, N. Study of chemoconvection by PIV at neutralization reaction under normal and modulated gravity. Exp Fluids 62, 10 (2021). https://doi.org/10.1007/s00348-020-03097-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-020-03097-0

Navigation