Skip to main content

Advertisement

Log in

Estimating the integral length scale on turbulent flows from the zero crossings of the longitudinal velocity fluctuation

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The integral length scale (\(\mathcal {L}\)) is considered to be characteristic of the largest motions of a turbulent flow, and as such, it is an input parameter in modern and classical approaches of turbulence theory and numerical simulations. Its experimental estimation, however, could be difficult in certain conditions, for instance, when the experimental calibration required to measure \(\mathcal {L}\) is hard to achieve (hot-wire anemometry on large scale wind-tunnels, and field measurements), or in ‘standard’ facilities using active grids due to the behaviour of their velocity autocorrelation function \(\rho (r)\), which does not in general cross zero. In this work, we provide two alternative methods to estimate \(\mathcal {L}\) using the variance of the distance between successive zero crossings of the streamwise velocity fluctuations, thereby reducing the uncertainty of estimating \(\mathcal {L}\) under similar experimental conditions. These methods are applicable to a variety of situations such as active grids flows, field measurements, and large-scale wind tunnels.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akinlabi EO, Wacławczyk M, Mellado JP, Malinowski SP (2019) Estimating turbulence kinetic energy dissipation rates in the numerically simulated stratocumulus cloud-top mixing layer: evaluation of different methods. J Atmos Sci 76(5):1471–1488

    Article  Google Scholar 

  • Bendat JS, Piersol AG (2011) Random data: analysis and measurement procedures, vol 729. Wiley, New York

    MATH  Google Scholar 

  • Bewley G.P, Chang K, Bodenschatz E, for Turbulence Research, I.C. (2012) On integral length scales in anisotropic turbulence. Phys Fluids 24(6):061702

  • Cava D, Katul GG, Molini A, Elefante C (2012) The role of surface characteristics on intermittency and zero-crossing properties of atmospheric turbulence. J Geophys Res Atmos 117(D1):D01104

    Article  Google Scholar 

  • Chamecki M (2013) Persistence of velocity fluctuations in non-Gaussian turbulence within and above plant canopies. Phys Fluids 25(11):115110

    Article  Google Scholar 

  • Dairay T, Obligado M, Vassilicos JC (2015) Non-equilibrium scaling laws in axisymmetric turbulent wakes. J Fluid Mech 781:166–195

    Article  MathSciNet  Google Scholar 

  • Ferenc JS, Néda Z (2007) On the size distribution of poisson voronoi cells. Phys A 385(2):518–526

    Article  Google Scholar 

  • Gad-el Hak M, Corrsin S (1974) Measurements of the nearly isotropic turbulence behind a uniform jet grid. J Fluid Mech 62(1):115–143

    Article  Google Scholar 

  • Gagne Y, Castaing B, Baudet C, Malécot Y (2004) Reynolds dependence of third-order velocity structure functions. Phys Fluids 16(2):482–485

    Article  Google Scholar 

  • Griffin KP, Wei NJ, Bodenschatz E, Bewley GP (2019) Control of long-range correlations in turbulence. Exp Fluids 60(4):55

    Article  Google Scholar 

  • Hearst RJ, Lavoie P (2015) The effect of active grid initial conditions on high reynolds number turbulence. Exp Fluids 56(10):185

    Article  Google Scholar 

  • Krogstad PÅ, Davidson P (2010) Is grid turbulence saffman turbulence? J Fluid Mech 642:373

    Article  MathSciNet  Google Scholar 

  • Mazellier N (2005) Dynamique spatio-temporelle du champ de vorticité en turbulence: mesures par corrélation acoustique dynamique. Ph.D. thesis

  • Mazellier N, Vassilicos J (2008) The turbulence dissipation constant is not universal because of its universal dependence on large-scale flow topology. Phys Fluids 20(1):015101

    Article  Google Scholar 

  • McFadden J (1958) The axis-crossing intervals of random functions-ii. IRE Trans Inf Theory 4(1):14–24

    Article  MathSciNet  Google Scholar 

  • Monchaux R, Bourgoin M, Cartellier A (2010) Preferential concentration of heavy particles: a Voronoï analysis. Phys Fluids. https://doi.org/10.1063/1.3489987

    Article  Google Scholar 

  • Monchaux R, Bourgoin M, Cartellier A (2012) Analyzing preferential concentration and clustering of inertial particles in turbulence. Int J Multiph Flow 40:1–18

    Article  Google Scholar 

  • Mora DO, Cartellier A, Obligado M (2019a) Experimental estimation of turbulence modification by inertial particles at moderate \({\rm re}_{\lambda }\). Phys Rev Fluids 4:074309. https://doi.org/10.1103/PhysRevFluids.4.074309

    Article  Google Scholar 

  • Mora DO, Muñiz Pladellorens E, Riera Turró P, Lagauzere M, Obligado M (2019b) Energy cascades in active-grid-generated turbulent flows. Phys Rev Fluids 4:104601. https://doi.org/10.1103/PhysRevFluids.4.104601

    Article  Google Scholar 

  • Mydlarski L (2017) A turbulent quarter century of active grids: from Makita (1991) to the present. Fluid Dyn Res 49(6):061401

    Article  MathSciNet  Google Scholar 

  • O’Neill P.L, Nicolaides D, Honnery D, Soria J, et al (2004) Autocorrelation functions and the determination of integral length with reference to experimental and numerical data. In: 15th Australasian fluid mechanics conference, vol 1, pp 1–4. University of Sydney Sydney, NSW, Australia

  • Peinke J, Tabar MR, Wächter M (2019) The Fokker–Planck approach to complex spatiotemporal disordered systems. Annu Rev Condens Matter Phys 10:107–132

    Article  Google Scholar 

  • Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Puga AJ, LaRue JC (2017) Normalized dissipation rate in a moderate Taylor Reynolds number flow. J Fluid Mech 818:184–204

    Article  MathSciNet  Google Scholar 

  • Smith J, Hopcraft K, Jakeman E (2008) Fluctuations in the zeros of differentiable Gaussian processes. Phys Rev E 77(3):031112

    Article  MathSciNet  Google Scholar 

  • Sreenivasan K, Prabhu A, Narasimha R (1983) Zero-crossings in turbulent signals. J Fluid Mech 137:251–272

    Article  Google Scholar 

  • Sumbekova S, Cartellier A, Aliseda A, Bourgoin M (2017) Preferential concentration of inertial sub-Kolmogorov particles: the roles of mass loading of particles, Stokes numbers, and Reynolds numbers. Phys Rev Fluids 2(2):24302. https://doi.org/10.1103/PhysRevFluids.2.024302

    Article  Google Scholar 

  • Tennekes H, Lumley JL (1972) A first course in turbulence. MIT Press, Cambridge

    Book  Google Scholar 

  • Tritton DJ (2012) Physical fluid dynamics. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  • Tsinober A, Tsinober, Jacobs (2019) Essence of turbulence as a physical phenomenon. Springer, Berlin

    Book  Google Scholar 

  • Valente P, Vassilicos JC (2011) The decay of turbulence generated by a class of multiscale grids. J Fluid Mech 687:300–340

    Article  Google Scholar 

  • Vassilicos JC (2015) Dissipation in turbulent flows. Annu Rev Fluid Mech 47:95–114

    Article  MathSciNet  Google Scholar 

  • Wilson LR, Hopcraft KI (2017) Periodicity in the autocorrelation function as a mechanism for regularly occurring zero crossings or extreme values of a Gaussian process. Phys Rev E 96(6):062129

    Article  Google Scholar 

Download references

Acknowledgements

Our work has been partially supported by the LabEx Tec21 (Investissements d’Avenir—Grant agreement \(\#\) ANR-11-LABX-0030), and by the ANR project ANR-15-IDEX-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Obligado.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mora, D.O., Obligado, M. Estimating the integral length scale on turbulent flows from the zero crossings of the longitudinal velocity fluctuation. Exp Fluids 61, 199 (2020). https://doi.org/10.1007/s00348-020-03033-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-020-03033-2

Navigation