Abstract
We introduce the first comprehensive approach to determine the uncertainty in volumetric Particle Tracking Velocimetry (PTV) measurements. Volumetric PTV is a state-of-the-art non-invasive flow measurement technique, which measures the velocity field by recording successive snapshots of the tracer particle motion using a multi-camera set-up. The measurement chain involves reconstructing the three-dimensional particle positions by a triangulation process using the calibrated camera mapping functions. The non-linear combination of the elemental error sources during the iterative self-calibration correction and particle reconstruction steps increases the complexity of the task. Here, we first estimate the uncertainty in the particle image location, which we model as a combination of the particle position estimation uncertainty and the reprojection error uncertainty. The latter is obtained by a gaussian fit to the histogram of disparity estimates within a sub-volume. Next, we determine the uncertainty in the camera calibration coefficients. As a final step, the previous two uncertainties are combined using an uncertainty propagation through the volumetric reconstruction process. The uncertainty in the velocity vector is directly obtained as a function of the reconstructed particle position uncertainty. The framework is tested with synthetic vortex ring images. The results show good agreement between the predicted and the expected RMS uncertainty values. The prediction is consistent for seeding densities tested in the range of 0.01–0.1 particles per pixel. Finally, the methodology is also successfully validated for an experimental test case of laminar pipe flow velocity profile measurement where the predicted uncertainty in the streamwise component is within 9% of the RMS error value.
Graphic abstract

This is a preview of subscription content, access via your institution.









Abbreviations
- \({\overrightarrow{x}}_{w}=\{{x}_{w} {y}_{w} {z}_{w}\}\) :
-
World coordinates or physical coordinates
- \({\overrightarrow{X}}^{c}=\{{X}^{c} {Y}^{c}\}\) :
-
Camera image coordinates for camera \(c\)
- \({F}_{{X}^{c}}, {F}_{{Y}^{c}}\) :
-
\({X}^{c}\) And \({Y}^{c}\) calibration mapping function for camera \(c\)
- \({\overrightarrow{a}}^{c}={\left\{{a}_{i}^{c}\right\}}_{i=1 to 19}\) :
-
Camera \(c\) mapping function coefficient error in variable \(p\)
- \({\sigma }_{p}\) :
-
Standard uncertainty in variable \(p\)
- \(\overline{\overline{\Sigma }}_{p}\) :
-
Covariance matrix in variable \(p\)
- \(N\) :
-
Number of cameras
- \({N}_{cal}\) :
-
Number of disparity grid points
- \({\overrightarrow{d}}^{c}=\{{d}_{{X}^{c}} {d}_{{Y}^{c}}\}\) :
-
Disparity vector estimated from ensemble of reprojection error for each camera \(c\)
- \(u, v, w\) :
-
Velocity components in \(x, y, z\) directions, respectively
- \(\left|p\right|\) :
-
L2-norm or magnitude of a variable \(p\)
- \(\overline{\overline{C}}_{{\overrightarrow{x}}_{w}}\) :
-
Coefficient matrix of mapping function gradients with respect to \({\overrightarrow{x}}_{w}\) for all cameras
- \(\overline{\overline{C}}_{{\overrightarrow{a}}^{c}}\) :
-
Coefficient matrix of mapping function gradients with respect to \({\overrightarrow{a}}^{c}\) evaluated at disparity grid points
- \({\rho }_{pq}\) :
-
Correlation coefficient between variables \(p\) and \(q\)
- \({{\overrightarrow{x}}_{w}}_{j}\) :
-
The world coordinates at \(j\) th time frame where \(j\) is an integer
- \({\sigma }_{res}^{2}\) :
-
Variance in fit residual error
- \(diag\overline{\overline{A}}\) :
-
A function which denotes the diagonal elements of matrix \(\overline{\overline{A}}\)
- \(b\) :
-
Related to the measure of bias error or uncertainty in any variable
- \(cal\) :
-
A variable or quantity evaluated in the calibration process
- \(est\) :
-
Denotes the estimated value of any variable
- \(true\) :
-
Denotes the known or designed value of any variable
- PIV:
-
Particle Image Velocimetry
- PTV:
-
Particle Tracking Velocimetry
- IPR:
-
Iterative Particle Reconstruction
- OTF:
-
Optical Transfer Function
- STB:
-
Shake-The-Box
- CRLB:
-
Cramer Rao Lower Bound
- ppp:
-
Particles per pixel
References
Angioletti M, Nino E, Ruocco G (2005) CFD turbulent modelling of jet impingement and its validation by particle image velocimetry and mass transfer measurements. Int J Therm Sci 44(4):349–356. https://doi.org/10.1016/j.ijthermalsci.2004.11.010
Baek SJ, Lee SJ (1996) A new two-frame particle tracking algorithm using matching possibility. Exp Fluids 22:261–304
Bhattacharya S, Charonko JJ, Vlachos PP (2017) Stereo-particle image velocimetry uncertainty quantification. Meas Sci Technol 28(1):015301. https://doi.org/10.1088/1361-6501/28/1/015301
Bhattacharya S, Charonko JJ, Vlachos PP (2018) Particle image velocimetry (PIV) uncertainty quantification using moment of correlation (MC) plane. Meas Sci Technol 29(11):115301. https://doi.org/10.1088/1361-6501/aadfb4
Boomsma A, Bhattacharya S, Troolin D, Pothos S, Vlachos P (2016) A comparative experimental evaluation of uncertainty estimation methods for two-component PIV. Meas Sci Technol 27(9):094006. https://doi.org/10.1088/0957-0233/27/9/094006
Brady MR, Raben SG, Vlachos PP (2009) Methods for digital particle image sizing (DPIS): comparisons and improvements. Flow Meas Instrum 20(6):207–219. https://doi.org/10.1016/j.flowmeasinst.2009.08.001
Brindise MC, Busse MM, Vlachos PP (2018) Density- and viscosity-matched newtonian and non-newtonian blood-analog solutions with PDMS refractive index. Exp Fluids 59(11):173. https://doi.org/10.1007/s00348-018-2629-6
Brindise MC, Sean R, Dickerhoff B, Schnell S, Markl M, Saloner D, Rayz VL, Vlachos PP (2019) Multi-modality cerebral aneurysm haemodynamic analysis: in vivo 4D flow MRI, in vitro volumetric particle velocimetry and in silico computational fluid dynamics. J R Soc Interface. https://doi.org/10.1098/rsif.2019.0465
Cardwell ND, Vlachos PP, Thole KA (2011) A multi-parametric particle-pairing algorithm for particle tracking in single and multiphase flows. Meas Sci Technol 22(10):105406. https://doi.org/10.1088/0957-0233/22/10/105406
Charonko JJ, Vlachos PP (2013) Estimation of uncertainty bounds for individual particle image velocimetry measurements from cross-correlation peak ratio. Meas Sci Technol 24(6):065301. https://doi.org/10.1088/0957-0233/24/6/065301
Cierpka C, Lütke B, Kähler CJ (2013) Higher order multi-frame particle tracking velocimetry. Exp Fluids 54(5):1533. https://doi.org/10.1007/s00348-013-1533-3
Coleman HW, Glenn Steele W (2009) Experimentation, validation, and uncertainty analysis for engineers. Wiley, Hoboken. https://doi.org/10.1002/9780470485682
Cowen EA, Monismith SG, Cowen EA, Monismith SG (1997) A hybrid digital particle tracking velocimetry technique. Exp Fluids 22(3):199–211. https://doi.org/10.1007/s003480050038
Elsinga GE, Scarano F, Wieneke B, van Oudheusden BW (2006) Tomographic particle image velocimetry. Exp Fluids 41(6):933–947. https://doi.org/10.1007/s00348-006-0212-z
Ferreira CS, Van Bussel G, Van Kuik G (2007) 2D CFD simulation of dynamic stall on a vertical axis wind turbine: verification and validation with PIV measurements. In: Collection of technical papers—45th AIAA aerospace sciences meeting, vol 23, pp 16191–201. https://doi.org/10.2514/6.2007-1367
Ford MD, Nikolov HN, Milner JS, Lownie SP, DeMont EM, Kalata W, Loth F, Holdsworth DW, Steinman DA (2008) PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models. J Biomech Eng. https://doi.org/10.1115/1.2900724
Fuchs T, Hain R, Kähler CJ (2016) Double-frame 3D-PTV using a tomographic predictor. Exp Fluids 57(11):174. https://doi.org/10.1007/s00348-016-2247-0
Fuchs T, Hain R, Kähler CJ (2017) Non-iterative double-frame 2D/3D particle tracking velocimetry. Exp Fluids 58(9):119. https://doi.org/10.1007/s00348-017-2404-0
Gavin H (2011) The Levenberg–Marquardt method for nonlinear least squares curve-fitting problems. Department of Civil and Environmental Engineering, Duke University, Durham, pp 1–15
Guezennec YG, Brodkey RS, Trigui N, Kent JC (1994) Algorithms for fully automated three-dimensional particle tracking velocimetry. Exp Fluids 17(4):209–219. https://doi.org/10.1007/BF00203039
Lei Y-C, Tien W-H, Duncan J, Paul M, Ponchaut N, Mouton C, Dabiri D, Rösgen T, Hove J (2012) A vision-based hybrid particle tracking velocimetry (PTV) technique using a modified cascade correlation peak-finding method. Exp Fluids 53(5):1251–1268. https://doi.org/10.1007/s00348-012-1357-6
Li D, Zhang Y, Sun Y, Yan W (2008) A multi-frame particle tracking algorithm robust against input noise. Meas Sci Technol 19(10):105401. https://doi.org/10.1088/0957-0233/19/10/105401
Maas HG, Gruen A, Papantoniou D (1993) Particle tracking velocimetry in three-dimensional flows. Exp Fluids 15(2):133–146. https://doi.org/10.1007/BF00190953
Malik NA, Dracos Th, Papantoniou DA (1993) Particle tracking velocimetry in three-dimensional flows—Part II: particle tracking. Exp Fluids 15(4–5):279–294. https://doi.org/10.1007/BF00223406
Marxen M, Sullivan PE, Loewen MR, Jähne B (2000) Comparison of gaussian particle center estimators and the achievable measurement density for particle tracking velocimetry. Exp Fluids 29(2):145–153. https://doi.org/10.1007/s003489900085
Mikheev AV, Zubtsov VM (2008) Enhanced particle-tracking velocimetry (EPTV) with a combined two-component pair-matching algorithm. Meas Sci Technol 19(8):085401
Ohmi K, Li H-Y (2000) Particle-tracking velocimetry with new algorithms. Meas Sci Technol 11(6):603–616. https://doi.org/10.1088/0957-0233/11/6/303
Okamoto K, Hassan YA, Schmidl WD (1995) New tracking algorithm for particle image velocimetry. Exp Fluids 19(5):342–347. https://doi.org/10.1007/BF00203419
Pereira F, Stüer H, Graff EC, Gharib M (2006) Two-frame 3D particle tracking. Meas Sci Technol 17(7):1680–1692. https://doi.org/10.1088/0957-0233/17/7/006
Rajendran LK, Bane SPM, Vlachos PP (2019) Uncertainty amplification due to density/refractive-index gradients in volumetric PTV and BOS experiments. ArXiv Preprint ArXiv:1910.09379
Schanz D, Gesemann S, Schröder A, Wieneke B, Novara M (2013) Non-uniform optical transfer functions in particle imaging: calibration and application to tomographic reconstruction. Meas Sci Technol 24(2):024009. https://doi.org/10.1088/0957-0233/24/2/024009
Schanz D, Gesemann S, Schröder A (2016) Shake-the-box: lagrangian particle tracking at high particle image densities. Exp Fluids 57(5):70. https://doi.org/10.1007/s00348-016-2157-1
Sciacchitano A (2019) Uncertainty quantification in particle image velocimetry. Meas Sci Technol. https://doi.org/10.1088/1361-6501/ab1db8
Sciacchitano A, Wieneke B, Scarano F (2013) PIV uncertainty quantification by image matching. Meas Sci Technol 24(4):045302. https://doi.org/10.1088/0957-0233/24/4/045302
Sciacchitano A, Neal DR, Smith BL, Warner SO, Vlachos PP, Wieneke B, Scarano F (2015) Collaborative framework for PIV uncertainty quantification: comparative assessment of methods. Meas Sci Technol 26(7):074004. https://doi.org/10.1088/0957-0233/26/7/074004
Soloff SM, Adrian RJ, Liu ZC (1997) Distortion compensation for generalized stereoscopic particle image velocimetry. Meas Sci Technol 8(12):1441–1454
Stitou A, Riethmuller ML (2001) Extension of PIV to super resolution using PTV. Meas Sci Technol 12(9):1398
Takehara K, Adrian RJ, Etoh GT, Christensen KT (2000) A Kalman tracker for super-resolution PIV. Exp Fluids 29(1):S034–41. https://doi.org/10.1007/s003480070005
Timmins BH, Wilson BW, Smith BL, Vlachos PP (2012) A method for automatic estimation of instantaneous local uncertainty in particle image velocimetry measurements. Exp Fluids. https://doi.org/10.1007/s00348-012-1341-1
Van Gent PL, Michaelis D, Van Oudheusden BW, Weiss P-É, De Kat R, Laskari A, Jeon YJ et al (2017) Comparative assessment of pressure field reconstructions from particle image velocimetry measurements and lagrangian particle tracking. Exp Fluids 58:33. https://doi.org/10.1007/s00348-017-2324-z
van Ooij P, Guédon A, Poelma C, Schneiders J, Rutten MCM, Marquering HA, Majoie CB, vanBavel E, Nederveen AJ (2012) Complex flow patterns in a real-size intracranial aneurysm phantom: phase contrast mri compared with particle image velocimetry and computational fluid dynamics. NMR Biomed 25(1):14–26. https://doi.org/10.1002/nbm.1706
Wieneke B (2008) Volume self-calibration for 3D particle image velocimetry. Exp Fluids 45:549–556. https://doi.org/10.1007/s00348-008-0521-5
Wieneke B (2013) Iterative reconstruction of volumetric particle distribution. Meas Sci Technol 24(2):024008. https://doi.org/10.1088/0957-0233/24/2/024008
Wieneke B (2015) PIV uncertainty quantification from correlation statistics. Meas Sci Technol 26(7):074002. https://doi.org/10.1088/0957-0233/26/7/074002
Wu J-Z, Ma H-Y, Zhou M-D (2006) Vorticity and vortex dynamics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-29028-5
Xue Z, Charonko JJ, Vlachos PP (2014) Particle image velocimetry correlation signal-to-noise ratio metrics and measurement uncertainty quantification. Fluid Dyn Meas Sci Technol 25(11):115301. https://doi.org/10.1088/0957-0233/25/11/115301
Xue Z, Charonko JJ, Vlachos PP (2015) Particle image pattern mutual information and uncertainty estimation for particle image velocimetry. Meas Sci Technol 26(7):074001. https://doi.org/10.1088/0957-0233/26/7/074001
Acknowledgements
This work is supported by the National Science Foundation’s MRI program grant with award number 1725929.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Bhattacharya, S., Vlachos, P.P. Volumetric particle tracking velocimetry (PTV) uncertainty quantification. Exp Fluids 61, 197 (2020). https://doi.org/10.1007/s00348-020-03021-6
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00348-020-03021-6