Skip to main content
Log in

Alternating current coaxial electrospray for micro-encapsulation

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The present study examines the potential of low-frequency (< 1 kHz) alternating current (AC) electric field actuation for micro-encapsulation using coaxial electrospray. Ethanol, olive oil and glycerol fluid combinations have been used as working fluid. The amplitude of actuation has been varied in the range of 5.4–7.2 kV. Dye visualization of the Taylor cone and high-speed visualization of electrospray have been carried out. Confocal microscopy has been used to characterize the capsules structure. Current measurement has been used to quantify the net charge content of the capsules. The residual current carried by droplets is lower for AC actuation compared to that of DC actuation. DC actuation shows straight generatrix of Taylor cone while AC actuation shows cusp shape. Difference in charge accumulation on the interface of the core and shell liquid for the DC and AC actuation and the resulting Maxwell stress influence the curvature of Taylor cone. Bi-orthogonal decomposition is used to characterize the stability of the electrospray process. The cone jet is more stable at a higher frequency of AC actuation compared to low-frequency actuation. The minimum potential required for stable cone jet formation is lower for AC actuation compared to that of DC actuation. The Taylor cone length and cone angle are a function of actuation waveform, flow rates through the coaxial nozzle and actuation amplitude. The present study demonstrates that square wave AC actuation can successfully generate stable coaxial cone jet and capsules.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

AC:

Alternating current

CEHDA:

Coaxial electrohydrodynamic atomization

DC:

Direct current

EHDA:

Electrohydrodynamic atomization

α :

Ratio of inner jet diameter to outer jet diameter

β :

Dielectric constant

\( \varepsilon \) :

Permittivity of fluid

\( \varepsilon_{0} \) :

Permittivity of free space

\( \gamma \) :

Surface tension

\( \gamma_{\text{eff}} \) :

Surface tension of mixture

\( \kappa \) :

Electrical conductivity

μ :

Viscosity

\( \rho \) :

Density of fluid

\( \theta_{\text{c}} \) :

Cone angle

B oe :

Electrical Bond number

B og :

Gravitational Bond number

d j,i :

Inner jet diameter

d j,o :

Outer jet diameter

d j :

Jet diameter

d ni,i :

Inner diameter of inner nozzle

d ni,o :

Outer diameter of inner nozzle

d no,i :

Inner diameter of outer nozzle

d no,o :

Outer diameter of outer nozzle

f :

Frequency of actuation signal

I :

Current

L :

Length scale

l :

Length scale of cone length

\(l'\) :

Length scale of droplet

L c :

Cone length

O h :

Ohnesorge number

Q :

Flow rate

Q i :

Inner fluid flow rate

Q 0 :

Outer fluid flow rate

t e :

Electrical relaxation time

t h :

Hydrodynamic time

V :

Applied potential

V 0 :

Characteristic velocity

V rms :

Root mean square voltage

W e :

Weber number

References

  • Agostinho LLF, Yurteri CU, Fuchs EC, Marijnissen JCM (2012) Monodisperse water microdroplets generated by electrohydrodynamic atomization in the simple-jet mode. Appl Phys Lett 100(24):244,105

    Article  Google Scholar 

  • Barrero A, Loscertales IG (2008) Synthesis of micro and nanoparticles from coaxial electrified jets. Progress in Industrial Mathematics at ECMI 2006. Springer, Berlin, pp 35–47

    Book  MATH  Google Scholar 

  • Barrero A, Lpez-Herrera J, Loscertales I (2002) Recent advances and in electroatomization. In: ILASS-Europe-2002 Zaragoza 9–11 September

  • Chang MW, Stride E, Edirisinghe M (2010) Controlling the thickness of hollow polymeric microspheres prepared by electrohydrodynamic atomization. J R Soc Interface 7(Suppl 4):S451–S460

    Google Scholar 

  • Chen X, Jia L, Yin X, Cheng J, Lu J (2005) Spraying modes in coaxial jet electrospray with outer driving liquid. Phys Fluids 17(3):032,101

    Article  MATH  Google Scholar 

  • Cloupeau M, Prunet-Foch B (1990) Electrostatic spraying of liquids: main functioning modes. J Electrostat 25(2):165–184

    Article  Google Scholar 

  • Cloupeau M, Prunet-Foch B (1994) Electrohydrodynamic spraying functioning modes: a critical review. J Aerosol Sci 25(6):1021–1036

    Article  Google Scholar 

  • de Wit TD, Pecquet AL, Vallet JC, Lima R (1994) The biorthogonal decomposition as a tool for investigating fluctuations in plasmas. Phys Plasmas 1(10):3288–3300

    Article  Google Scholar 

  • Duby MH, Deng W, Kim K, Gomez T, Gomez A (2006) Stabilization of monodisperse electrosprays in the multi-jet mode via electric field enhancement. J Aerosol Sci 37(3):306–322

    Article  Google Scholar 

  • Enayati M, Ahmad Z, Stride E, Edirisinghe M (2010) Size mapping of electric field-assisted production of polycaprolactone particles. J R Soc Interface 7(Suppl 4):S393–S402

    Google Scholar 

  • Farook U, Zhang H, Edirisinghe M, Stride E, Saffari N (2007) Preparation of microbubble suspensions by co-axial electrohydrodynamic atomization. Med Eng Phys 29(7):749–754

    Article  Google Scholar 

  • Gamero-Castaño M (2008) Characterization of the electrosprays of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide in vacuum. Phys Fluids 20(3):032,103

    Article  MATH  Google Scholar 

  • Gañán-Calvo AM (1997) Cone-jet analytical extension of taylor’s electrostatic solution and the asymptotic universal scaling laws in electrospraying. Phys Rev Lett 79(2):217–220

    Article  Google Scholar 

  • Gañán-Calvo AM (2004) On the general scaling theory for electrospraying. J Fluid Mech 507:203212a

    MATH  Google Scholar 

  • Gañán-Calvo AM, Montanero JM (2009) Revision of capillary cone-jet physics: electrospray and flow focusing. Phys Rev E 79(6):066305

    Article  Google Scholar 

  • Gañán-Calvo A, Dávila J, Barrero A (1997) Current and droplet size in the electrospraying of liquids. scaling laws. J Aerosol Sci 28(2):249–275

    Article  Google Scholar 

  • Gañán-Calvo AM, López-Herrera JM, Rebollo-Muñoz N, Montanero JM (2016) The onset of electrospray: the universal scaling laws of the first ejection. Sci Rep 6(1):32357

    Article  Google Scholar 

  • Ghayempour S, Mortazavi SM (2013) Fabrication of micro–nanocapsules by a new electrospraying method using coaxial jets and examination of effective parameters on their production. J Electrostat 71(4):717–727

    Article  Google Scholar 

  • Hartman R, Borra JP, Brunner D, Marijnissen J, Scarlett B (1999) The evolution of electrohydrodynamic sprays produced in the cone-jet mode, a physical model. J Electrostat 47(3):143–170

    Article  Google Scholar 

  • Hémon P, Santi F (2003) Applications of biorthogonal decompositions in fluid–structure interactions. J Fluids Struct 17(8):1123–1143

    Article  Google Scholar 

  • Higuera FJ (2017) Qualitative analysis of the minimum flow rate of a cone-jet of a very polar liquid. J Fluid Mech 816:428–441

    Article  MathSciNet  MATH  Google Scholar 

  • Jaworek A, Krupa A (1999) Jet and drops formation in electrohydrodynamic spraying of liquids. A systematic approach. Exp Fluids 27(1):43–52

    Article  Google Scholar 

  • Jaworek A, Lackowski M, Krupa A, Czech T (2006) Electrostatic interaction of free EHD jets. Exp Fluids 40(4):568–576

    Article  Google Scholar 

  • Joffre GH, Cloupeau M (1986) Characteristic forms of electrified menisci emitting charges. J Electrostat 18(2):147–161

    Article  Google Scholar 

  • Joffre G, Prunet-Foch B, Berthomme S, Cloupeau M (1982) Deformation of liquid menisci under the action of an electric field. J Electrostat 13(2):151–165

    Article  Google Scholar 

  • Kessick R, Fenn J, Tepper G (2004) The use of AC potentials in electrospraying and electrospinning processes. Polymer 45(9):2981–2984

    Article  Google Scholar 

  • Lastochkin D, Chang HC (2005) A high-frequency electrospray driven by gas volume charges. J Appl Phys 97(12):123,309

    Article  Google Scholar 

  • Lee YH, Wu B, Zhuang WQ, Chen DR, Tang YJ (2011) Nanoparticles facilitate gene delivery to microorganisms via an electrospray process. J Microbiol Methods 84(2):228–233

    Article  Google Scholar 

  • Lim LK, Hua J, Wang CH, Smith KA (2010) Numerical simulation of cone-jet formation in electrohydrodynamic atomization. AIChE J 57(1):57–78

    Article  Google Scholar 

  • López-Herrera J, Barrero A, López A, Loscertales I, Márquez M (2003) Coaxial jets generated from electrified taylor cones. scaling laws. J Aerosol Sci 34(5):535–552

    Article  Google Scholar 

  • Maheshwari S, Chang HC (2007) Effects of bulk charge and momentum relaxation time scales on ac electrospraying. J Appl Phys 102(3):034,902

    Article  Google Scholar 

  • Maheshwari S, Chetwani N, Chang HC (2009) Alternating current electrospraying. Ind Eng Chem Res 48(21):9358–9368

    Article  Google Scholar 

  • Mei F, Chen DR (2007) Investigation of compound jet electrospray: particle encapsulation. Phys Fluids 19(10):103,303

    Article  MATH  Google Scholar 

  • Mei F, Chen DR (2008) Operational modes of dual-capillary electrospraying and the formation of the stable compound cone-jet mod. Aerosol Air Qual Res 8(2):218–232

    Article  MathSciNet  Google Scholar 

  • Pareta R, Edirisinghe M (2006) A novel method for the preparation of biodegradable microspheres for protein drug delivery. J R Soc Interface 3(9):573–582

    Article  Google Scholar 

  • Ponce-Torres A, Rebollo-Muñoz N, Herrada MA, Gañán-Calvo AM, Montanero JM (2018) The steady cone-jet mode of electrospraying close to the minimum volume stability limit. J Fluid Mech 857:142–172

    Article  MathSciNet  MATH  Google Scholar 

  • Rosell-Llompart J, Grifoll J, Loscertales IG (2018) Electrosprays in the cone-jet mode: from taylor cone formation to spray development. J Aerosol Sci 125:2–31

    Article  Google Scholar 

  • Scalf M, Westphall MS, Smith LM (2000) Charge reduction electrospray mass spectrometry. Anal Chem 72(1):52–60

    Article  Google Scholar 

  • Si T, Zhang L, Li G, Roberts CJ, Yin X, Xu R (2013) Experimental design and instability analysis of coaxial electrospray process for microencapsulation of drugs and imaging agents. J Biomed Opt 18(7):075,003

    Article  Google Scholar 

  • Stride E, Pancholi K, Edirisinghe M, Samarasinghe S (2008) Increasing the nonlinear character of microbubble oscillations at low acoustic pressures. J R Soc Interface 5(24):807–811

    Article  Google Scholar 

  • Taylor G (1964) Disintegration of water drops in an electric field. Proc R Soc Lond Ser A Math Phys Sci 280(1382):383–397

    MATH  Google Scholar 

  • Vinoth BR, Panigrahi PK (2014) Characteristics of low reynolds number non-boussinesq fountains from non-circular sources. Phys Fluids 26(1):014,106

    Article  Google Scholar 

  • Wang P, Chen Z, Chang HC (2006a) An integrated micropump and electrospray emitter system based on porous silica monoliths. Electrophoresis 27(20):3964–3970

    Article  Google Scholar 

  • Wang P, Maheshwari S, Chang HC (2006b) Polyhedra formation and transient cone ejection of a resonant microdrop forced by an ac electric field. Phys Rev Lett 96(25):254502

    Article  Google Scholar 

  • Xu Q, Qin H, Yin Z, Hua J, Pack DW, Wang CH (2013) Coaxial electrohydrodynamic atomization process for production of polymeric composite microspheres. Chem Eng Sci 104:330–346

    Article  Google Scholar 

  • Yan F, Farouk B, Ko F (2003) Numerical modeling of an electrostatically driven liquid meniscus in the cone–jet mode. J Aerosol Sci 34(1):99–116

    Article  Google Scholar 

  • Yeo LY, Chang HC (2006) High frequency AC electrosprays: mechanisms and applications. In: Advances in fluid mechanics VI, WIT Press

  • Yeo LY, Lastochkin D, Wang SC, Chang HC (2004) A new ac electrospray mechanism by maxwell-wagner polarization and capillary resonance. Phys Rev Lett 92(13):133902

    Article  Google Scholar 

  • Yeo LY, Gagnon Z, Chang HC (2005) AC electrospray biomaterials synthesis. Biomaterials 26(31):6122–6128

    Article  Google Scholar 

  • Yuan S, Lei F, Liu Z, Tong Q, Si T, Xu RX (2015) Coaxial electrospray of curcumin-loaded microparticles for sustained drug release. PLOS One 10(7):e0132,609

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Panigrahi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 19452 KB)

Supplementary material 2 (mp4 6459 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A., Panigrahi, P.K. Alternating current coaxial electrospray for micro-encapsulation. Exp Fluids 61, 29 (2020). https://doi.org/10.1007/s00348-019-2851-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-019-2851-x

Navigation