Velocity refinement of PIV using global optical flow

Abstract

In this study, we propose a method to enhance the particle image velocimetry (PIV) velocity resolution using global optical flow along with image warping. A global optical flow formula proposed by Brox et al. (High accuracy optical flow estimation based on a theory for warping. In: Proceedings of the 8th European conference on computer vision, vol 4, pp 25–36, 2004) is adopted to compensate the intensity changes of PIV image pairs, which depend on the set-up and synchronization of a laser and a camera. The proposed method is quantitatively evaluated and validated using synthetic particle image pairs generated for Rankine vortices and reference DNS-based velocity data. The proposed method outperforms the conventional PIV method in capturing small scale vortex and turbulent structures due to its enhanced spatial resolution. In addition, the proposed method shows good performance in large displacement fields and varying image intensity whereas optical flow is applicable to small displacement and susceptible to image intensity variation in general. Finally, the proposed method is applied to real PIV particle images of a multiple rectangular jet flow. The results show that the proposed method successfully works out high-resolution fluid mechanical structure and quantities while preserving the conventional PIV results.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Adrian RJ (1991) Particle-imaging techniques for experimental fluid mechanics. Annu Rev Fluid Mech 23(1):261–304

    Article  Google Scholar 

  2. Alvarez L, Castano CA, Garcia M, Krissian K, Mazorra L, Salgado A, Sanchez J (2009) A new energy-based method for 3D motion estimation of incompressible PIV flows. Comput Vis Image Underst 113:802–810

    Article  Google Scholar 

  3. Baker S, Scharstein D, Lewis JP, Roth S, Black MJ, Szeliski R (2011) A Database and evaluation methodology for optical flow. Int J Comput Vis 92:1–31

    Article  Google Scholar 

  4. Becker F, Wieneke B, Petra S, Schröder A, Schnörr C (2012) Variational adaptive correlation method for flow estimation. IEEE Trans Image Process 21(6):3053–3065

    MathSciNet  Article  Google Scholar 

  5. Brox T, Bruhn A, Papenberg N, Weickert J (2004) High accuracy optical flow estimation based on a theory for warping. In: Proceedings of the 8th European conference on computer vision, vol 4, pp 25–36

    Google Scholar 

  6. Cai S, Mémin É, Dérian P, Xu C (2018) Motion estimation under location uncertainty for turbulent fluid flows. Exp Fluids 59(1):8

    Article  Google Scholar 

  7. Cariler J (2005) Second set of fluid mechanics image sequences, European Project Fluid Image Analysis and Description (FLUID). http://www.fluid.irisa.fr

  8. Cassisa C, Simoens S, Prinet V, Shao L (2011) Subgrid scale formulation of optical flow for the study of turbulent flow. Exp Fluids 51(6):1739–1754

    Article  Google Scholar 

  9. Chen X, Zille P, Shao L, Corpetti T (2015) Optical flow for incompressible turbulence motion estimation. Exp Fluids 56:8

    Article  Google Scholar 

  10. Corpetti T, Mémin E, Perez P (2002) Dense estimation of fluid flow. IEEE Trans Pattern Anal Mach Intell 24(3):365–380

    Article  Google Scholar 

  11. Corpetti T, Heitz D, Arroyo G, Mémin E, Santa-Cruz A (2006) Fluid experimental flow estimation based on an optical-flow scheme. Exp Fluids 40(1):80–97

    Article  Google Scholar 

  12. Dérian P, Héas P, Herzet C, Mémin É (2012) Wavelet-based fluid motion estimation. scale space and variational methods in computer vision. Springer, Berlin, pp 737–748

    Google Scholar 

  13. Dérian P, Héas P, Herzet C, Mémin É (2013) Wavelets and optical flow motion estimation. Numer Math Theory Methods Appl 6(1):116–137

    MathSciNet  MATH  Google Scholar 

  14. Di Florio D, Di Felice F, Romano GP (2002) Windowing, re-shaping and re-orientation interrogation windows in particle image velocimetry for the investigation of shear flows. Meas Sci Technol 13:953

    Article  Google Scholar 

  15. Hart DP (2000) PIV error correction. Exp Fluids 29(1):13–22

    Article  Google Scholar 

  16. Heitz D, Héas P, Mémin E, Carlier J (2008) Dynamic consistent correlation-variational approach for robust optical flow estimation. Exp Fluids 45(4):595–608

    Article  Google Scholar 

  17. Heitz D, Mémin E, Schnörr C (2010) Variational fluid flow measurements from image sequences: synopsis and perspectives. Exp Fluids 48:369–393

    Article  Google Scholar 

  18. Horn BK, Schunck BG (1981) Determining optical flow. Artif Intell 17(1–3):185–203

    Article  Google Scholar 

  19. Huang HT, Fiedler HE, Wang JJ (1993) Limitation and improvement of PIV. Part2: particle image distortion, ad novel technique. Exp Fluids 15:263–273

    Article  Google Scholar 

  20. Jambunathan K, Ju XY, Dobbins BN, Ashforth-Frost S (1995) An improved cross correlation technique for particle image velocimetry. Meas Sci Technol 6:507–514

    Article  Google Scholar 

  21. Kadri-Harouna S, Dérian P, Héas P, Mémin E (2013) Divergence-free wavelets and high order regularization. Int J Comput Vis 103(1):80–99

    MathSciNet  Article  Google Scholar 

  22. Koenderink JJ (1975) Invariant properties of the motion parallax field due to the movement of rigid bodies relative to an observer. Opt Acta 22(9):773–791

    Article  Google Scholar 

  23. Liu T (2017) OpenOpticalFlow: an open source program for extraction of velocity fields from flow visualization images. J Open Res Softw 5(1):29

    MathSciNet  Article  Google Scholar 

  24. Liu T, Shen L (2008) Fluid flow and optical flow. J Fluid Mech 614:253–291

    MathSciNet  Article  Google Scholar 

  25. Liu T, Merat A, Makhmalbaf MHM, Fajardo C, Merati P (2015) Comparison between optical flow and cross-correlation methods for extraction of velocity fields from particle images. Exp Fluids 56:166

    Article  Google Scholar 

  26. Lucas B, Kanade T (1981) An iterative image registration technique with an application to stereo vision. Proceedings international joint conference on artificial intelligence. Morgan Kaufmann Publishers, San Francisco, pp 674–679

    Google Scholar 

  27. Raffel M, Willert CE, Scarano F, Kähler CJ, Wereley ST, Kompenhans J (2018) Particle image velocimetry: a practical guide, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  28. Reeder MF, Crafton JW, Estevadeordal J, DeLapp J, McNiel C, Peltier D, Reynolds T (2010) Clean seeding for flow visualization and velocimetry measurements. Exp Fluids 48(5):889–900

    Article  Google Scholar 

  29. Ruhnau P, Kohlberger T, Schnörr C, Nobach H (2005) Variational optical flow estimation for particle image velocimetry. Exp Fluids 38(1):21–32

    Article  Google Scholar 

  30. Scarano F (2002) Iterative image deformation methods in PIV. Meas Sci Technol 13(1):R1

    Article  Google Scholar 

  31. Scarano F (2003) Theory of non-isotropic spatial resolution in PIV. Exp Fluids 35:268–277

    Article  Google Scholar 

  32. Scarano F, Riethnuller ML (1999) Iterative multigrid approach in PIV image processing with discrete window offset. Exp Fluids 26(6):513–523

    Article  Google Scholar 

  33. Scarano F, Riethmuller ML (2000) Advances in iterative multigrid PIV image processing. Exp Fluids 29(7):S051–S060

    Article  Google Scholar 

  34. Theunissen R, Scarano F, Riethmuller ML (2007) An adaptive sampling and windowing interrogation method in PIV. Meas Sci Technol 18:275–287

    Article  Google Scholar 

  35. Theunissen R, Scarano F, Riethmuller ML (2010) Spatially adaptive PIV interrogation based on data ensemble. Exp Fluids 48:875–887

    Article  Google Scholar 

  36. Thielicke W, Stamhuis EJ (2014) PIVlab—towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. J Open Res Softw 2(1):e30

    Google Scholar 

  37. Uras S, Girosi F, Verri A, Torre V (1988) A computational approach to motion perception. Biol Cybern 60:79–87

    Article  Google Scholar 

  38. Wedel A, Pock T, Zach C, Cremers D, Bischof H (2009) An improved algorithm for TV-L1 optical flow. Statistical and geometrical approaches to visual motion analysis. Springer, Berlin, Heidelberg, pp 23–45

    Google Scholar 

  39. Wereley ST, Meinhart CD (2001) Second-order accurate particle image velocimetry. Exp Fluids 31(3):258–268

    Article  Google Scholar 

  40. Wieneke B, Pfeiffer K (2010) Adaptive PIV with variable interrogation window size and shape. In: 15th International symposium on applications of laser techniques to fluid mechanics, Lisbon, Portugal, 05–08 July

  41. Willert CE, Gharib M (1991) Digital particle image velocimetry. Exp Fluids 10(4):181–193

    Article  Google Scholar 

  42. Yang Z, Johnson M (2017) Hybrid particle image velocimetry with the combination of cross-correlation and optical flow method. J Vis 20(3):625–638

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Nuclear R&D Program through the National Research Foundation of Korea (NRF) funded by MSIP; Ministry of Science ICT & Future Planning (No. NRF-2019M2A8A1000630).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eung Soo Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Seong, J.H., Song, M.S., Nunez, D. et al. Velocity refinement of PIV using global optical flow. Exp Fluids 60, 174 (2019). https://doi.org/10.1007/s00348-019-2820-4

Download citation