Skip to main content

Analysis of moving model experiments in a towing tank for aerodynamic drag measurement of high-speed trains

Abstract

The present study assesses the applicability of towing tank experiments using a moving model for the investigation of the aerodynamics of long land-borne heavy vehicles such as buses, trucks, and trains. Based on experiments with a 1:22 scaled model of a high-speed train, the influence of various conditions relevant for the transferability of the results obtained in water to air is analysed exemplarily. These conditions include surface waves, cavitation and submergence depth. The experiments were carried out in the shallow water towing tank of the Technische Universität Berlin. It is shown that outside a critical Froude number range of about 0.2 < Fr < 1.2 the impact of the surface waves can be neglected and no cavitation appears in the velocity range investigated. Furthermore, a correction method is proposed taking into account the bias through surface waves at small submergence and thus allowing for a wider Froude number range. The data obtained in the towing tank are found to be in excellent agreement to other investigation methods.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Notes

  1. 1.

    According to Barlow, the pressure gradient in a closed square jet with width B can be calculated depending on the distance ΔL using cpL)= − k ΔL/B. The factor k has been observed in the range of 0.016–0.04. For the plot shown in Fig. 14, B = √8 (same cross-section area as in the towing tank) and k = 0.016 were used. The choice of the lower limit k value considers the normally optimized shape of the test section regarding boundary layer growth. However, the appearance of blockage effects both in closed and open test sections might impose additional pressure gradients that were not considered here.

References

  1. Airy GB (1845) Tides and waves. Encycl Metrop 192:241–396

    Google Scholar 

  2. Aoki K, Miyata H, Kanai M, Hanaoka Y, Zhu M (1992) A waterbasin test technique for the aerodynamic design of road vehicles. SAE technical paper (920348), pp 163–181. https://doi.org/10.4271/920348

  3. Baker CJ (1986) Train aerodynamic forces and moments from moving model experiments. J Wind Eng Ind Aerod 24:227–251

    Article  Google Scholar 

  4. Baker CJ, Gilbert T, Jordan S (2013) The validation of the use of moving model experiments for the measurement of train aerodynamic parameters in the open air. In: Proceedings of the 10th world congress on rail research, Sidney, 25th–27th November 2013

  5. Barlow JB, Rae WH, Pope A (1999) Low-speed wind tunnel testing. Wiley, New York

    Google Scholar 

  6. Brennen CE (2005) Fundamentals of multiphase flows. Cambridge University Press, Cambridge. ISBN 0521 848040

  7. Brockie NJW, Baker CJ (1990) The aerodynamic drag of high speed trains. J Wind Eng Ind Aerod 34:273–290

    Article  Google Scholar 

  8. CEN European Standard (2010) EN 14067-6:2010-05 railway applications—aerodynamics—part 6: requirements and test procedures for cross wind assessment. Technical report

  9. CEN European Standard (2013) EN 14067-4:2013 railway applications—aerodynamics, part 4: requirements and test procedures for aerodynamics on open track. Technical report

  10. Clauss G, Lehmann E, Östergaard C (1992) Offshore structures. Springer, Berlin

    Book  Google Scholar 

  11. Erickson GE, Peake DJ, Del Frate J et al (1986) Water facilities in retrospect and prospect—an illumination tool for vehicle design. NASA technical memorandum 89409

  12. Fischer D, Tschepe J, Nayeri CN, Paschereit CO (2018) Partially-averaged Navier–Stokes method for train aerodynamics. In: Proceedings of the 3rd international symposium of rail aerodynamics and train design, Berlin, 30–31 January 2018

  13. Gad-el Hak M (1987) The water towing tank as an experimental facility. Exp Fluids 5(5):289–297. https://doi.org/10.1007/BF00277707

    Article  Google Scholar 

  14. Gertler M (1950) Resistance experiments on a systematic series of streamlined bodies of revolution. Navy Department, The David W. Taylor Model Basin, Washington

    Google Scholar 

  15. Havelock TH (1908) The propagation of groups of waves in dispersive media, with application to waves on water produced by a travelling disturbance. Proc R Soc 89(613):430–446

    MATH  Google Scholar 

  16. Heine D, Ehrenfried K (2012) Experimental study of the entry of a high-speed train into a railway tunnel. Int J Railw Technol 1:1–18

    Article  Google Scholar 

  17. Hensen W (1955) Modellversuche für den Hafen Acajulta. Jahrb Hafenbautechnischen Ges 23/24:38–76

    Article  Google Scholar 

  18. Hoerner SF (1965) Fluid-dynamic drag. Hoerner fluid dynamics, Bakersfield

  19. Howe MS, Iida M, Fukuda T, Maeda T (2003) Aeroacoustics of a tunnel-entrance hood with a rectangular window. J Fluid Mech 487:211–243. https://doi.org/10.1017/S0022112003004725

    Article  MATH  Google Scholar 

  20. Hucho WH (2011) Aerodynamik der stumpfen Körper. Vieweg + Teubner, Wiesbaden

    MATH  Google Scholar 

  21. Inui T (1954) Japanese developments on the theory of wave-making and wave resistance. Trondheim OCLC 246326540

  22. Jagadeesh P, Murali K (2010) RANS predictions of free surface effects on axisymmetric undetwater body. Eng Appl Comput Fluid 4(2):301–313. https://doi.org/10.1080/19942060.2010.11015318

    Article  Google Scholar 

  23. Jönsson M, Wagner C, Loose S (2012) Underfloor flow measurements of 1:50 generic high-speed train configurations for different ground conditions in a water towing tank. Int J Railw Technol 1:85–113

    Article  Google Scholar 

  24. Jönsson M, Wagner C, Loose S (2014) Particle image velocimetry of the underfloor flow for generic high-speed train models in a water towing tank. Proc Inst Mech Eng F J Rail Rapid Transit 228(2):194–209. https://doi.org/10.1177/0954409712470607

    Article  Google Scholar 

  25. Kwon H, Park Y, Lee D, Kim M (2001) Wind tunnel experiments on Korean high-speed trains using various ground simulation techniques. J Wind Eng Ind Aerod 89:1179–1195

    Article  Google Scholar 

  26. Larsson L, Raven HC (2010) Ship resistance and flow. The Society of Naval Architects and Marine Engineers, Jersey City

    Google Scholar 

  27. Larsson L, Hammar L, Nilsson LU, Berndtsson A, Knutson K, Danielson H (1989) A study of ground simulation-correlation between wind-tunnel and water-basin tests of a full-scale car. SAE technical paper (890368), pp 421–445. https://doi.org/10.4271/890368

  28. Mansoorzadeh S, Javanmard E (2014) An investigation of free surface effects on drag and lift coefficients of an autonomous underwater vehicle (AUV) using computational and experimental fluid dynamics methods. J Fluids Struct 51:161–171. https://doi.org/10.1016/j.jfluidstructs.2014.09.001

    Article  Google Scholar 

  29. Mayer W, Wiedemann J, Neubeck J (2002) Fahrwiderstandsbestimmung im realen Fahrbetrieb. ATZ 104(5):484–491

    Google Scholar 

  30. Molland AF, Turnock SR, Hudson DA (2011) Ship resistance and propulsion: practical estimation of ship propulsive power. Cambridge University Press, Cambridge

    Book  Google Scholar 

  31. Neppert H (1981) Böenbeeinflussung schnellfahrender Züge. ZEV Glas Ann 105(2):43–53

    Google Scholar 

  32. Neppert H, Sanderson R (1974) Untersuchungen zur Schnellbahn-Aerodynamik. Z Flugwiss 22(10):347–359

    Google Scholar 

  33. Neppert H, Sanderson R (1976) Böenbeeinflussung schnellfahrender Züge. Z Flugwiss 24(3):151–161

    Google Scholar 

  34. Neppert H, Sanderson R (1977) Vergleich zwischen Modell- und Originalmeßergebnissen sowie der Theorie zur Schnellbahn-Aerodynamik. ZEV Glas Ann 101(4):97–102

    Google Scholar 

  35. Pope CW (1991) The simulation of flows in railway tunnels using a 1/25th scale moving model facility. In: Haerter A (ed) Aerodynamics and ventilation of vehicle tunnels. Elsevier, Brighton, pp 709–737

    Google Scholar 

  36. Rosenberger R, Herzog J (1993) Versuche mit dem Triebzug intercity experimental auf DB-Strecken. BZA München, München

    Google Scholar 

  37. Schmidt HJ, Woszidlo R, Nayeri CN, Paschereit CO (2017) Separation control with fluidic oscillators in water. Exp Fluids 58:106. https://doi.org/10.1007/s00348-017-2392-0

    Article  Google Scholar 

  38. Somaschini C, Argentini T, Rocchi D et al (2018) A new methodology for the assessment of the running resistance of trains without knowing the characterisitics of the track: application to full-scale experimental data. Proc Iinst Mech Eng F J Rail Rapid Transit 232:1814–1827. https://doi.org/10.1177/0954409717751754

    Article  Google Scholar 

  39. Stephens RG, Stevens PRRJ, Babinsky H (2016) A method for truck underbody aerodynamic investigation. SAE Int J Commer Veh 9(2):429–437. https://doi.org/10.4271/2016-01-9020

    Article  Google Scholar 

  40. Tschepe J, Nayeri CN (2017) Aerodynamik im Wasserkanal: Bestimmung des Luftwiderstandes mit geschleppten Modellen. ETR 66(10):45–49

    Google Scholar 

  41. Tschepe J, Nayeri CN (2018) Untersuchungen zum Strömungswiderstand von Schienenfahrzeugen mit bewegten Modellen im Wasserschleppkanal. ZEVrail Glas Ann 142(4):124–131

    Google Scholar 

  42. Tschepe J, Fischer D, Nayeri CN et al (2018) Investigation of high-speed train drag with towing tank experiments and CFD. Flow Turbul Combust. https://doi.org/10.1007/s10494-018-9962-y

    Article  Google Scholar 

  43. Wickern G (2001) On the application of classical wind tunnel corrections for automotive bodies. SAE technical paper 2001-01-0633. https://doi.org/10.4271/2001-01-0633

  44. Wigley WCS (1953) Water forces on submerged bodies in motion. Trans Inst Nav Archit 95:268–279

    Google Scholar 

  45. Willemsen E (1997) High Reynolds number wind tunnel experiments on trains. J Wind Eng Ind Aerod 69–71:437–447. https://doi.org/10.1016/S0167-6105(97)00175-X

    Article  Google Scholar 

  46. Wilson-Haffenden S, Renilson M, Ranmuthugala D, Dawson E (2010) An investigation into the wavemaking resistance of a submarine travelling below the free surface. In: Proceedings of PACIFIC, pp 370–379

  47. Yang M, Du J, Li Z et al (2017) Moving model test of high-speed train aerodynamic drag based on stagnation pressure measurements. PLoS ONE. https://doi.org/10.1371/journal.pone.0169471

    Article  Google Scholar 

  48. Zhang D, Liu ZP, Li YM (2002) Cavitation monitoring by means of acoustic approach. In: Advances in fluid modeling and turbulence measurements, pp 249–255. https://doi.org/10.1142/9789812777591_0030

  49. Zhang L, Yang M, Liang X, Zhang J (2017) Oblique tunnel portal effects on train and tunnel aerodynamics based on moving model tests. J Wind Eng Ind Aerod 167:128–139. https://doi.org/10.1016/j.jweia.2017.04.018

    Article  Google Scholar 

Download references

Acknowledgements

The research presented was supported by the ZIM program and the BIT GmbH. The project was funded under Grant Number EP 141376 from the “Zentrales Innovationsprogramm Mittelstand (ZIM)” of the Federal Ministry of Economy and Energy, following a decision of the German Bundestag.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jonathan Tschepe.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tschepe, J., Nayeri, C.N. & Paschereit, C.O. Analysis of moving model experiments in a towing tank for aerodynamic drag measurement of high-speed trains. Exp Fluids 60, 98 (2019). https://doi.org/10.1007/s00348-019-2748-8

Download citation