Skip to main content

Advertisement

Log in

Utilizing differential interferometry for spatially resolved pressure field measurements of laser-induced cavitation

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

In the present study, differential interferometry and shadowgraphy are combined to determine cavitation-induced pressure fields and corresponding bubble dynamics during laser-induced single-bubble cavitation. An evaluation method is presented that allows to reconstruct the pressure distribution from interference images with high accuracy. The minimum reconstruction accuracy of the pressure amplitudes with the presented method is determined from synthetic data sets for an angular range of \({8.9}^{\circ }\le \varphi \le {63.0}{^{\circ }}\) to be \({96.2}{\%}\). On the basis of statistically evaluated data, the energy budget of single cavitation bubbles \(E_\mathrm{b}\) and the corresponding pressure wave energy \(E_\mathrm{s}\) could be determined also for weak pressure wave amplitudes in the order of \({6}{\hbox { bar}}\).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Alloncle AP, Dufresne D, Autric M (1995) Characterization of pressure waves in liquids using an interferometric method. In: Brun R, Dumitrescu LZ (eds) Shock waves @ Marseille III. Springer, Berlin, pp 239–244

    Chapter  Google Scholar 

  • Brujan E-A, Vogel A (2006) Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom. J Fluid Mech 558:281

    Article  Google Scholar 

  • Brujan E-A, Nahen K, Schmidt P, Vogel A (2001) Dynamics of laser-induced cavitation bubbles near elastic boundaries: influence of the elastic modulus. J Fluid Mech 433:283–314

    Article  Google Scholar 

  • Coutier-Delgosha O, Fortes-Patella R, Reboud JL, Hofmann M, Stoffel B (2003) Experimental and numerical studies in a centrifugal pump with two-dimensional curved blades in cavitating condition. J Fluids Eng 125(6):970

    Article  Google Scholar 

  • Dijkink R, Ohl C-D (2008) Laser-induced cavitation based micropump. Lab Chip 8(10):1676

    Article  Google Scholar 

  • Han B, Khler K, Jungnickel K, Mettin R, Lauterborn W, Vogel A (2015) Dynamics of laser-induced bubble pairs. J Fluid Mech 771:706–742

    Article  Google Scholar 

  • Han B, Zhu R, Guo Z, Liu L, Ni X-W (2018) Control of the liquid jet formation through the symmetric and asymmetric collapse of a single bubble generated between two parallel solid plates. Eur J Mech B/Fluids 72:114–122

    Article  MathSciNet  Google Scholar 

  • Hansen EW, Law P-L (1985) Recursive methods for computing the Abel transform and its inverse. J Opt Soc Am A 2(4):510

    Article  MathSciNet  Google Scholar 

  • Iben U, Morozov A, Winklhofer E, Wolf F (2011) Laser-pulse interferometry applied to high-pressure fluid flow in micro channels. Exp Fluids 50(3):597–611

    Article  Google Scholar 

  • Keller JB, Miksis M (1980) Bubble oscillations of large amplitude. J Acoust Soc Am 68(2):628–633

    Article  Google Scholar 

  • Kim B-M, Komashko AM, Rubenchik AM, Feit MD, Reidt S, Da Silva LB, Eichler J (2003) Interferometric analysis of ultrashort pulse laser-induced pressure waves in water. J Appl Phys 94(1):709–715

    Article  Google Scholar 

  • Koch M, Lechner C, Reuter F, Khler K, Mettin R, Lauterborn W (2016) Numerical modeling of laser generated cavitation bubbles with the finite volume and volume of fluid method, using OpenFOAM. Comput Fluids 126:71–90

    Article  MathSciNet  Google Scholar 

  • Kordel S, Nowak T, Skoda R, Hussong J (2016) Combined density gradient and velocity field measurements in transient flows by of differential interferometry and long-range \(\upmu\)PIV. Exp Fluids 57(9):138

    Article  Google Scholar 

  • Lauterborn W, Ohl C-D (1997) Cavitation bubble dynamics. Ultrason Sonochem 4(2):65–75

    Article  Google Scholar 

  • Lindau O, Lauterborn W (2003) Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall. J Fluid Mech 479:327–348

    Article  Google Scholar 

  • Merzkirch WF (1965) A simple schlieren interferometer system. AIAA J 3(10):1974–1976

    Article  Google Scholar 

  • Merzkirch W (1987) Flow visualization, 2nd edn. Acad. Press, Orlando

    MATH  Google Scholar 

  • Pereira F, Salvatore F, Di Felice F (2004) Measurement and modeling of propeller cavitation in uniform inflow. J Fluids Eng 126(4):671

    Article  Google Scholar 

  • Rayleigh L (1917) On the pressure developed in a liquid during the collapse of a spherical cavity. Lond Edinb Dublin Philos Mag J Sci 34(200):94–98

    Article  Google Scholar 

  • Shen YR (1984) The principles of nonlinear optics. Wiley, New York

    Google Scholar 

  • Sofer M, Watterson JD, Wollin TA, Nott L, Razvi H, Denstedt JD (2002) Holmium: YAG laser lithotripsy for upper urinary tract calculi in 598 patients. J Urol 167(1):31–34

    Article  Google Scholar 

  • Supponen O, Obreschkow D, Kobel P, Farhat M (2015) Detailed jet dynamics in a collapsing bubble. J Phys Conf Ser 656:012038

    Article  Google Scholar 

  • Thiemann A, Holsteyns F, Cairs C, Mettin R (2017) Sonoluminescence and dynamics of cavitation bubble populations in sulfuric acid. Ultrason Sonochem 34:663–676

    Article  Google Scholar 

  • Tomita Y, Kodama T (2003) Interaction of laser-induced cavitation bubbles with composite surfaces. J Appl Phys 94(5):2809–2816

    Article  Google Scholar 

  • Veysset D, Aznev AA, Pezeril T, Kooi S, Nelson KA (2016) Interferometric analysis of laser-driven cylindrically focusing shock waves in a thin liquid layer. Sci Rep 6(1):24

    Article  Google Scholar 

  • Veysset D, Gutirrez-Hernndez U, Dresselhaus-Cooper L, De Colle F, Kooi S, Nelson KA, Quinto-Su PA, Pezeril T (2018) Single-bubble and multibubble cavitation in water triggered by laser-driven focusing shock waves. Phys Rev E 97(5):053112

    Article  Google Scholar 

  • Vogel A (1996) Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water. J Acoust Soc Am 100(1):148

    Article  Google Scholar 

  • Vogel A, Lauterborn W (1988) Acoustic transient generation by laserproduced cavitation bubbles near solid boundaries. J Acoust Soc Am 84(2):719–731

    Article  Google Scholar 

  • Vogel A, Lauterborn W, Timm R (1989) Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary. J Fluid Mech 206(–1):299

    Article  Google Scholar 

  • Wagner W, Kretzschmar H-J (2008) International steam tables. Springer, Berlin

    Book  Google Scholar 

  • Ward B, Emmony D (1991) Interferometric studies of the pressures developed in a liquid during infrared-laser-induced cavitation-bubble oscillation. Infrared Phys 32:489–515

    Article  Google Scholar 

  • Zeng Q, Gonzalez-Avila SR, Dijkink R, Koukouvinis P, Gavaises M, Ohl C-D (2018) Wall shear stress from jetting cavitation bubbles. J Fluid Mech 846:341–355

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was financially supported by DFG (HU 2264/1-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Kordel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kordel, S., Hussong, J. Utilizing differential interferometry for spatially resolved pressure field measurements of laser-induced cavitation. Exp Fluids 60, 14 (2019). https://doi.org/10.1007/s00348-018-2659-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-018-2659-0

Navigation