Skin friction and coherent structures within a laminar separation bubble

Abstract

We study the Laminar Separation Bubble (LSB) which develops on the suction side of a NACA 0015 hydrofoil by means of a Temperature-Sensitive Paint (TSP), at a Reynolds number of \(1.8\times 10^5\) and angles of attack \(\mathrm{AoA} = [3^{\circ }\), \(5^{\circ }\), \(7^{\circ }\), \(10^{\circ }\)]. The thermal footprints \(T_\mathrm{w}(x,y,t)\) of the fluid unveil three different flow regimes whose complexity in time and space decreases when \(\mathrm{AoA}\) increases, up to \(10^{\circ }\) where the LSB-induced spatial gradients are linked to quasi-steady positions in time. At \(\mathrm{AoA} =7^{\circ }\) the LSB system undergoes a 3D destabilization, that induces C-shaped arcs at separation and weak bubble-flapping at reattachment. Structural changes occur at \(AoA=5^{\circ }\) and \(3^{\circ }\): bubble-flapping raises homogeneously at reattachment while intermittent, wedge-shaped events alter the LSB shape. The relative skin-friction vector fields \(\varvec {\tau }_\mathrm{w}(x,y,t)\), extracted from \(T_\mathrm{w}(x,y,t)\) by means of an optical-flow-based algorithm, provide the topology of the flow at the wall and feed a physics-based criterion for the identification of flow separation \({\mathfrak {S}}(y,t)\) and reattachment \({\mathfrak {R}}(y,t)\). This criterion fulfills, in average, a novel skin-friction ground-truth estimation grounded on the determination of the propagation velocity of temperature fluctuations. The obtained \({\mathfrak {S}}(y,t)\) is composed of several manifolds that extend spanwise from saddle points to converging nodes via the saddles unstable manifold, while, at least at higher AoA, manifolds that compose \({\mathfrak {R}}(y,t)\) move from diverging nodes to saddle points via the saddles stable manifolds. The triggering of a wedge-shaped event by a rising \(\varOmega\)-shaped vortex in the reverse LSB flow is captured and described in analogy to a simplified model.

Graphical Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

References

  1. Acharya D, Rani A, Agarwal S, Singh V (2016) Application of adaptive Savitsky-Golay filter for EEG signal processing. Perspect Sci 8:677–679. https://doi.org/10.1016/j.pisc.2016.06.056. http://www.sciencedirect.com/science/article/pii/S2213020916301951

  2. Arnal D, Casalis G, Houdeville R (2009) Practical transition prediction methods: subsonic and transonic flows. In: AGARD RTO-EN-AVT-151, 7.1–7.34

  3. Ashill PR, Betts CJ, M GI (1996) A wind tunnel study of transitional flows on a swept panel wing at high subsonic speeds. In: Proc. CEAS 2nd European forum on laminar flow technology, (AAAF, Paris), vol. Paper No. 10(1):10.3–10.17

  4. Boiko AV, Dovgal AV, Grek GR, Kozlov VV (2012) Physics of transitional shear flows: instability and laminar-turbulent transition in incompressible near-wall shear layers. In: Fluid Mechanics and its Applications, 98, Springer

  5. Borodulin VI, Gaponenko VR, Kachanov YS, Meyer DGW, Rist U, Lian QX, Lee CB (2002) Late-stage transitional boundary-layer structures. direct numerical simulation and experiment. Theor Comput Fluid Dyn 15(5):317–337

    Article  Google Scholar 

  6. Boutilier MSH, Yarusevych S (2012) Parametric study of separation and transition characteristics over an airfoil at low Reynolds numbers. Exp Fluids 52(6):1491–1506

    Article  Google Scholar 

  7. Burgmann S, Dannemann J, Schröder W (2008) Time-resolved and volumetric PIV measurements of a transitional separation bubble on an SD7003 airfoil. Exp Fluids 44(4):609–622

    Article  Google Scholar 

  8. Burgmann S, Schröder W (2008) Investigation of the vortex induced unsteadiness of a separation bubble via time-resolved and scanning PIV measurements. Exp Fluids 45(4):675–691

    Article  Google Scholar 

  9. Capone A, Klein C, Di Felice F, Beifuss U, Miozzi M (2015) Fast-response underwater TSP investigation of subcritical instabilities of a cylinder in crossflow. Exp Fluids 56(10):1–14

    Article  Google Scholar 

  10. CEIMM (2018) Centro Esperienze Idrodinamiche Marina Militare: Cavitation tunnel. http://www.insean.cnr.it/en/content/ceimm-cavitation-tunnel. Accessed 31 May 2018

  11. Cossali GE, Coghe A, Araneo L (2001) Near-field entrainment in an impulsively started turbulent gas jet. AIAA J 39(6):1113–1122

    Article  Google Scholar 

  12. Costantini M (2016) Experimental analysis of geometric, pressure gradient and surface temperature effects on boundary-layer transition in compressible high Reynolds number flows. PhD Thesis, RWTH Aachen

  13. Costantini M, Fey U, Henne U, Klein C (2015) Nonadiabatic surface effects on transition measurements using temperature-sensitive paints. AIAA J 53(5):1172–1187

    Article  Google Scholar 

  14. Costantini M, Hein S, Henne U, Klein C, Koch S, Schojda L, Ondrus V, Schröder W (2016) Pressure gradient and non-adiabatic surface effects on boundary-layer transition. AIAA J 54(11):3465–3480

    Article  Google Scholar 

  15. Dhawan S, Narasimha R (1958) Some properties of boundary layer flow during the transition from laminar to turbulent motion. J Fluid Mech 3:418–436. https://doi.org/10.1017/S0022112058000094

    Article  MATH  Google Scholar 

  16. Délery J (2013) Three-dimensional separated flows topology: singular points, beam splitters and vortex structures. Focus series in Fluid Mechanics. Wiley, Hoboken

    Google Scholar 

  17. Dovgal AV, Kozlov VV, Michalke A (1994) Laminar boundary layer separation: instability and associated phenomena. Progr Aerosp Sci 30(1):61–94

    Article  Google Scholar 

  18. Eckelmann H (1974) The structure of the viscous sublayer and the adjacent wall region in a turbulent channel flow. J Fluid Mech 65(3):439–459

    Article  Google Scholar 

  19. Fey U, Engler R, Egami Y, Iijima Y, Asai K, Jansen U, Quest J (2003) Transition detection by temperature sensitive paint at cryogenic temperatures in the european transonic wind tunnel (etw). In: ICIASF record, international congress on instrumentation in aerospace simulation facilities, pp 77–88

  20. Fujisawa N, Oguma Y, Nakano T (2009) Measurements of wall-shear-stress distribution on a NACA0018 airfoil by liquid-crystal coating and near-wall particle image velocimetry (PIV). Meas Sci Technol 20(6):065403

    Article  Google Scholar 

  21. Gad-El-Hak M, Davis SH, Mcmurray JT, Orszag SA (1984) On the stability of the decelerating laminar boundary layer. J Fluid Mech 138:297–323. https://doi.org/10.1017/S0022112084000136

    Article  Google Scholar 

  22. Gao L, Yu S (2015) Starting jets and vortex ring pinch-off., vortex rings and jets. In: Fluid mechanics and its applications, vol. 111. Springer, Singapore

  23. Gardner AD, Richter K (2015) Boundary layer transition determination for periodic and static flows using phase-averaged pressure data. Exp Fluids 56(6):119

    Article  Google Scholar 

  24. Gardner AD, Wolf CC, Raffel M (2016) A new method of dynamic and static stall detection using infrared thermography. Exp Fluids 57(149):149

    Article  Google Scholar 

  25. Gaster M (1966) The structure and behavior of laminar separation bubbles. AGARD CP–4:813–854

    Google Scholar 

  26. Genç MS, Karasu I, Hakan Açikel H (2012) An experimental study on aerodynamics of NACA2415 aerofoil at low Re numbers. Exp Therm Fluid Sci 39:252–264

    Article  Google Scholar 

  27. Geng C, He G, Wang Y, Xu C, Lozano-Durán A, Wallace JM (2015) Taylor’s hypothesis in turbulent channel flow considered using a transport equation analysis. Phys Fluids 27(2):025111

    Article  Google Scholar 

  28. Gerakopulos R, Boutilier MSH, Yarusevych S (2010) Aerodynamic characterization of a NACA 0018 airfoil at low Reynolds numbers. In: 40th AIAA Fluid Dynamics Conference

  29. Gulum TO, Erdogan AY, Durak Ata L, Yildirim T, Pace PE (2017) Enhanced LPI waveform representation by ambiguity-domain elliptical gaussian filtering. IEEE Trans Aerosp Electron Syst 53(2):762–777

    Article  Google Scholar 

  30. Hain R, Kähler CJ, Radespiel R (2009) Dynamics of laminar separation bubbles at low-Reynolds-number aerofoils. J Fluid Mech 630:129–153

    Article  Google Scholar 

  31. Hatman A, Wang T (1998) Separated-flow transition. Part 1 - experimental methodology and mode classification. In: American Society of Mechanical Engineers (Paper)

  32. Hatman A, Wang T (1998) Separated-flow transition. Part 2 - Experimental results. In: American Society of Mechanical Engineers (Paper)

  33. Hatman A, Wang T (1998) Separated-flow transition. Part 3–primary modes and vortex dynamics. In: Proceedings of the ASME Turbo Expo, 1

  34. Hetsroni G, Tiselj I, Bergant R, Mosyak A, Pogrebnyak E (2004) Convection velocity of temperature fluctuations in a turbulent flume. J Heat Transf 126(5):843–848

    Article  Google Scholar 

  35. Hilfer M, Dufhaus S, Yorita D, Klein C, Petersen A (2017) Application of pressure and temperature sensitive paint on a highly loaded turbine guide vane in a transonic linear cascade. In: Proceedings of the 1st global power and propulsion forum GPPF 2017, Zurich, Switzerland

  36. Hirschel E, Kordulla W, Cousteix J (2014) Three-dimensional attached viscous flow: basic principles and theoretical foundations. Springer. https://doi.org/10.1007/978-3-642-41378-0

  37. Horn BK, Schunck BG (1981) Determining optical flow. In: 1981 Technical symposium east, 319–331. International Society for Optics and Photonics

  38. Istvan MS, Yarusevych S (2018) Effects of free-stream turbulence intensity on transition in a laminar separation bubble formed over an airfoil. Exp Fluids 59(3):52. https://doi.org/10.1007/s00348-018-2511-6

    Article  Google Scholar 

  39. Jagadeesh CS, Balthazar M, Gross A, Fasel H (2013) Experimental investigation of the structure and dynamics of laminar separation bubbles at the onset of bursting. In: 31st AIAA applied aerodynamics conference

  40. Johansson AV, Alfredsson PH, Kim J (1991) Evolution and dynamics of shear-layer structures in near-wall turbulence. J Fluid Mech 224:579–599

    Article  Google Scholar 

  41. Jones LE, Sandberg RD, Sandham ND (2008) Direct numerical simulations of forced and unforced separation bubbles on an airfoil at incidence. J Fluid Mech 602:175–207

    Article  Google Scholar 

  42. Joseph LA, Borgoltz A, Devenport W (2016) Infrared thermography for detection of laminar-turbulent transition in low-speed wind tunnel testing. Exp Fluids 57(5):77

    Article  Google Scholar 

  43. Karasu I, Genc MS, Acikel H, Akpolat MT (2012) An experimental study on laminar separation bubble and transition over an aerofoil at low Reynolds number. In: Proceedings of the 30th AIAA applied aerodynamics conference, vol. 1. https://doi.org/10.2514/6.2012-3030

  44. Kim J, Hussain F (1993) Propagation velocity of perturbations in turbulent channel flow. Phys Fluids A 5(3):695–706

    Article  Google Scholar 

  45. Kirk TM, Yarusevych S (2017) Vortex shedding within laminar separation bubbles forming over an airfoil. Exp Fluids 58(5):43

    Article  Google Scholar 

  46. Koenderink JJ (1984) The structure of images. Biol Cybern 50(5):363–370

    MathSciNet  Article  Google Scholar 

  47. Kurelek JW, Lambert AR, Yarusevych S (2016) Coherent structures in the transition process of a laminar separation bubble. J Aircr 53(4):2295–2309

    Google Scholar 

  48. Kurits I, Lewis MJ (2009) Global temperature-sensitive paint system for heat transfer measurements in long-duration hypersonic flows. J Thermophys Heat Transf 23(2):256–266

    Article  Google Scholar 

  49. Lamb H (1975) Hydrodynamics, 6th edn. Cambridge University Press, Cambridge

    Google Scholar 

  50. Lambert AR, Yarusevych S (2017) Characterization of vortex dynamics in a laminar separation bubble. Exp Fluids 55(8):2664–2675

    Google Scholar 

  51. Lang M, Rist U, Wagner S (2004) Investigations on controlled transition development in a laminar separation bubble by means of LDA and PIV. Exp Fluids 36(1):43–52

    Article  Google Scholar 

  52. Lang W, Gardner AD, Mariappan S, Klein C, Raffel M (2015) Boundary-layer transition on a rotor blade measured by temperature-sensitive paint, thermal imaging and image derotation. Exp Fluids 56(6):118

    Article  Google Scholar 

  53. Lee T, Gerontakos P (2004) Investigation of flow over an oscillating airfoil. J Fluid Mech 512:313–341

    Article  Google Scholar 

  54. Lee T, Su YY (2011) Lift enhancement and flow structure of airfoil with joint trailing-edge flap and Gurney flap. Exp Fluids 50(6):1671–1684

    Article  Google Scholar 

  55. Lemarechal J, Klein C, Henne U, Puckert DK, Rist U (2018) Transition delay by oblique roughness elements in a blasius boundary-layer flow. In: AIAA Aerospace Sciences Meeting, 2018. https://doi.org/10.2514/6.2018-1057

  56. Lighthill M (1963) Attachment and separation in three-dimensional flow. Laminar Bound Layers 2(6):72–82

    Google Scholar 

  57. Liu T, Sullivan JP (2005) Pressure-and temperature-sensitive paints. Springer, Berlin, Heidelberg

    Google Scholar 

  58. Liu T, Woodiga S (2011) Feasibility of global skin friction diagnostics using temperature sensitive paint. Meas Sci Technol 22(11):115402

    Article  Google Scholar 

  59. Liu Y, Dang B, Li Y, Lin H, Ma H (2016) Applications of savitzky-golay filter for seismic random noise reduction. Acta Geophysica 64(1):101–124. https://doi.org/10.1515/acgeo-2015-0062

    Article  Google Scholar 

  60. Mahr GmbH (2001) Betriebsanleitung Perthometer S2. Göttingen, Germany

    Google Scholar 

  61. Maucher U, Rist U, Wagner S (1999) Transitional structures in a laminar separation bubble. In: W. Nitsche, R. Heinemann, H.J. Hilbig (eds) Notes on numerical fluid mechanics II, New results in numerical and experimental fluid mechanics vol72, pp 307–314

  62. Miozzi M, Capone A, Di Felice F, Klein C, Liu T (2016) Global and local skin friction diagnostics from TSP surface patterns on an underwater cylinder in crossflow. Phys Fluids 28(12):124101

    Article  Google Scholar 

  63. Moens F, Perraud J, Séraudie A, Houdeville R (2006) Transition measurement and prediction on a generic high-lift swept wing. Proc Inst Mech Eng Part G J Aerosp Eng 220(6):589–603

    Article  Google Scholar 

  64. Montelpare S, Ricci R (2004) A thermographic method to evaluate the local boundary layer separation phenomena on aerodynamic bodies operating at low Reynolds number. Int J Therm Sci 43(3):315–329

    Article  Google Scholar 

  65. Ol MV, McAuliffe BR, Hanff ES, Scholz U, Kähler C (2005) Comparison of laminar separation bubble measurements on a low Reynolds number airfoil in three facilities. In: 35th AIAA fluid dynamics conference and exhibit

  66. O’meara MM, Mueller TJ (1987) Laminar separation bubble characteristics on an airfoil at low Reynolds numbers. AIAA J 25(8):1033–1041

    Article  Google Scholar 

  67. Ondrus V, Meier R, Klein C, Henne U, Schäferling M, Beifuss U (2015) Europium 1,3-di(thienyl)propane-1,3-diones with outstanding properties for temperature sensing. Sens Actuators A Phys 233:434–441. https://doi.org/10.1016/j.sna.2015.07.023

    Article  Google Scholar 

  68. Popov AV, Botez RM, Labib M (2008) Transition point detection from the surface pressure distribution for controller design. J Aircr 45(1):23–28

    Article  Google Scholar 

  69. Risius S, Beck WH, Klein C, Henne U, Wagner A (2017) Determination of heat transfer into a wedge model in a hypersonic flow using temperature-sensitive paint. Exp Fluids 58(9):117

    Article  Google Scholar 

  70. Rist U (1998) Zur instabilität und transition in laminaren Ablöseblasen. Habilitation. Shaker Verlag, Aachen

    Google Scholar 

  71. Rist U (2005) Instability and transition mechanisms in laminar separation bubbles. In: RTO-EN-AVT-104:5–1–5–29

  72. Rist U, Augustin K (2006) Control of laminar separation bubbles using instability waves. AIAA J 44(10):2217–2223

    Article  Google Scholar 

  73. Rodríguez D, Theofilis V (2010) Structural changes of laminar separation bubbles induced by global linear instability. J Fluid Mech 655:280–305

    MathSciNet  Article  Google Scholar 

  74. Sadeh WZ, Brauer HJ (1980) A visual investigation of turbulence in stagnation flow about a circular cylinder. J Fluid Mech 99(01):53–64

    Article  Google Scholar 

  75. Salvatore F, Pereira F, Felli M, Calcagni D, Di Felice F (2006) Description of the INSEAN E779A propeller experimental dataset. Tech. Rep. INSEAN 2006-085, INSEAN-Italian Ship Model Basin

  76. Schafer RW (2011) What is a Savitzky-Golay filter? IEEE Signal Process Mag 28(4):111–117

    Article  Google Scholar 

  77. Sharma DM, Poddar K (2010) Experimental investigations of laminar separation bubble for a flow past an airfoil. Proc ASME Turbo Expo 6:1167–1173

    Google Scholar 

  78. Spalart PR, Strelets MK (2000) Mechanisms of transition and heat transfer in a separation bubble. J Fluid Mech 403:329–349

    Article  Google Scholar 

  79. Surana A, Grunberg O, Haller G (2006) Exact theory of three-dimensional flow separation. Part 1. Steady separation. J Fluid Mech 564:57–103

    MathSciNet  Article  Google Scholar 

  80. Tropea C, Yarin AL, Foss JF (2007) Springer handbook of experimental fluid mechanics, vol 1. Springer, Berlin, Heidelberg

    Google Scholar 

  81. Wang S, Zhou Y, Alam MM, Yang H (2014) Turbulent intensity and Reynolds number effects on an airfoil at low Reynolds numbers. Phys Fluids 26(11):115107

    Article  Google Scholar 

  82. Watkins AN, Buck GM, Leighty BD, Lipford WE, Oglesby DM (2008) Using pressure-and temperature-sensitive paint for global surface pressure and temperature measurements on the aft-body of a capsule reentry vehicle. In: AIAA Paper 2008-1230

  83. Wolf E, Kähler CJ, Troolin DR, Kykal C, Lai W (2011) Time-resolved volumetric particle tracking velocimetry of large-scale vortex structures from the reattachment region of a laminar separation bubble to the wake. Exp Fluids 50(1):977–988

    Article  Google Scholar 

  84. Yang K, Ferziger JH (1992) Numerical studies of natural transition in a decelerating boundary layer. J Fluid Mech 240:433–468

    Article  Google Scholar 

  85. Yang Z, Voke PR (2001) Large-eddy simulation of boundary-layer separation and transition at a change of surface curvature. J Fluid Mech 439:305–333

    Article  Google Scholar 

  86. Yoon SS, Heister SD (2004) Analytical formulas for the velocity field induced by an infinitely thin vortex ring. Int J Numer Methods Fluids 44(6):665–672

    Article  Google Scholar 

  87. Yorita D, Asai K, Klein C, Henne U, Schaber S(2012) Transition detection on rotating propeller blades by means oftemperature-sensitive paint. In: Proceedings of the 50th AIAAAerospace sciences meeting, pp 2012–1187

  88. Yuan W, Khalid M, Windte J, Scholz U, Radespiel R (2005) An investigation of low-Reynolds-number flows past airfoils. In: Collection of technical papers - AIAA applied aerodynamics conference 1, pp 102–120

  89. Zhang DH, Chew YT, Winoto SH (1996) Investigation of intermittency measurement methods for transitional boundary layer flows. Exp Therm Fluid Sci 12(4):433–443

    Article  Google Scholar 

  90. Zhong S (2002) Detection of flow separation and reattachment using shear-sensitive liquid crystals. Exp Fluids 32(6):667–673

    Article  Google Scholar 

  91. Zifeng Y, Haan FL, Hu H, Hongwei M (2007) An experimental investigation on the flow separation on a low-Reynolds-number airfoil. In: Collection of technical papers - 45th AIAA aerospace sciences meeting, 5:3421–3431

  92. Zilli J, Sutton D, Lavoie P (2017) Effect of freestream turbulence on laminar separation bubbles and flow transition on an SD7003 airfoil at low Reynolds numbers. In: AIAA SciTech Forum - 55th AIAA aerospace sciences meeting

  93. Zimmermann B, Kohler A (2013) Optimizing Savitzky-Golay parameters for improving spectral resolution and quantification in infrared spectroscopy. Appl Spectrosc 67(8):892–902. https://doi.org/10.1366/12-06723

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Flagship Project RITMARE, The Italian Research for the Sea, coordinated by the Italian National Research Council and funded by the Italian Ministry of Education, University and Research. Carsten Fuchs (DLR) is acknowledged for TSP surface treatment. An anonymous reviewer is also acknowledged for her/his careful contribution to improving the quality of the article.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Miozzi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 16820 KB)

Supplementary material 2 (MP4 9567 KB)

Supplementary material 3 (MP4 8626 KB)

Supplementary material 4 (MP4 7292 KB)

348_2018_2651_MOESM5_ESM.mp4

Supplementary material 5 (MP4 26149 KB)

Supplementary material 5 (MP4 26149 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Miozzi, M., Capone, A., Costantini, M. et al. Skin friction and coherent structures within a laminar separation bubble. Exp Fluids 60, 13 (2019). https://doi.org/10.1007/s00348-018-2651-8

Download citation