Signatures of shear-layer unsteadiness in proper orthogonal decomposition

Abstract

Proper orthogonal decomposition can be used to determine the dominant coherent structures present within a turbulent flow. In many flows, these structures are well represented by only a few high-energy modes. However, additional modes with clear spatial structure, but low-energy contribution can often be present in the proper orthogonal decomposition analysis, even for flows with a high degree of periodicity. One such mode has been observed in both free and impinging jets determined from particle image velocimetry. Both experimental and synthetic data are used to investigate the role of this particular mode, linking its existence to the unsteadiness of shear-layer large-scale coherent structures.

Graphical abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. Adrian RJ, Christensen KT, Liu ZC (2000) Analysis and interpretation of instantaneous turbulent velocity fields. Exp Fluids 29(3):275–290

    Article  Google Scholar 

  2. Alkislar MB, Krothapalli A, Lourenco LM (2003) Structure of a screeching rectangular jet: a stereoscopic particle image velocimetry study. J Fluid Mech 489:121–154

    Article  Google Scholar 

  3. Berkooz G, Holmes P, Lumley JL (1993) The proper orthogonal decomposition in the analysis of turbulent flows. Ann Rev Fluid Mech 25(1):539–575

    MathSciNet  Article  Google Scholar 

  4. Cavalieri AVG, Rodríguez D, Jordan P, Colonius T, Gervais Y (2013) Wavepackets in the velocity field of turbulent jets. J Fluid Mech 730:559–592

    MathSciNet  Article  Google Scholar 

  5. Edgington-Mitchell D, Honnery DR, Soria J (2014a) The underexpanded jet mach disk and its associated shear layer. Phys Fluids 26(9):096–101 (1994-present)

    Article  Google Scholar 

  6. Edgington-Mitchell D, Oberleithner K, Honnery DR, Soria J (2014b) Coherent structure and sound production in the helical mode of a screeching axisymmetric jet. J Fluid Mech 748:822–847

    Article  Google Scholar 

  7. Efron B (1982) The jackknife, the bootstrap and other resampling plans. SIAM, Philadelphia

    Google Scholar 

  8. Glauser MN, Leib SJ, George WK (1987) Coherent structures in the axisymmetric turbulent jet mixing layer. Turbul Shear Flows 5:134–145

    Article  Google Scholar 

  9. Gudmundsson K, Colonius T (2011) Instability wave models for the near-field fluctuations of turbulent jets. J Fluid Mech 689:97–128

    Article  Google Scholar 

  10. Gurka R, Liberzon A, Hetsroni G (2006) Pod of vorticity fields: a method for spatial characterization of coherent structures. Int J Heat Fluid Flow 27(3):416–423

    Article  Google Scholar 

  11. Jaunet V, Collin E, Delville J (2016) Pod-galerkin advection model for convective flow: application to a flapping rectangular supersonic jet. Exp Fluids 57(5):84

    Article  Google Scholar 

  12. Johansson PBV, George WK, Woodward SH (2002) Proper orthogonal decomposition of an axisymmetric turbulent wake behind a disk. Phys Fluids 14(7):2508–2514

    Article  Google Scholar 

  13. Kostas J, Soria J, Chong MS (2005) A comparison between snapshot pod analysis of piv velocity and vorticity data. Exp Fluids 38(2):146–160

    Article  Google Scholar 

  14. Kumar R, Wiley A, Venkatakrishnan L, Alvi F (2013) Role of coherent structures in supersonic impinging jets. Phys Fluids 25(7):076101

    Article  Google Scholar 

  15. Liu Z-C, Adrian RJ, Hanratty TJ (1994) Reynolds number similarity of orthogonal decomposition of the outer layer of turbulent wall flow. Phys Fluids 6(8):2815–2819

    Article  Google Scholar 

  16. Lumley JL (1967) The structure of inhomogeneous turbulent flows. In: Yaglom AM, Tatarski VI (eds) Atmospheric turbulence and wave propagation. Nauka, Moscow, pp 166–178

    Google Scholar 

  17. Melling A (1997) Tracer particles and seeding for particle image velocimetry. Meas Sci Technol 8(12):1406

    Article  Google Scholar 

  18. Meyer KE, Pedersen JM, Özcan O (2007) A turbulent jet in crossflow analysed with proper orthogonal decomposition. J Fluid Mech 583:199–227

    MathSciNet  Article  Google Scholar 

  19. Mitchell DM, Honnery DR, Soria J (2013) Near-field structure of underexpanded elliptic jets. Exp Fluids 54(7):1–13

    Article  Google Scholar 

  20. Oberleithner K, Sieber M, Nayeri CN, Paschereit CO, Petz C, Hege HC, Noack BR, Wygnanski I (2011) Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: stability analysis and empirical mode construction. J Fluid Mech 679:383–414

    Article  Google Scholar 

  21. Podvin Bérengère, Fraigneau Yann (2017) A few thoughts on proper orthogonal decomposition in turbulence. Phys Fluids 29(2):020709

    Article  Google Scholar 

  22. Powell A (1953) On edge tones and associated phenomena. Acta Acust United Acust 3(4):233–243

    Google Scholar 

  23. Robinson Stephen K (1991) Coherent motions in the turbulent boundary layer. Ann Rev Fluid Mech 23(1):601–639

    Article  Google Scholar 

  24. Shariff K, Manning TA (2013) A ray tracing study of shock leakage in a model supersonic jet. Phys Fluids (1994-present) 25(7):076103

    Article  Google Scholar 

  25. Sirovich L (1987) Turbulence and the dynamics of coherent structures. Part i: coherent structures. Q Appl Math 45(3):561–571

    Article  Google Scholar 

  26. Soria J (1996) An investigation of the near wake of a circular cylinder using a video-based digital cross-correlation particle image velocimetry technique. Exp Therm Fluid Sci 12(2):221–233

    Article  Google Scholar 

  27. Stuart JT (1967) On finite amplitude oscillations in laminar mixing layers. J Fluid Mech 29(3):417–440

    Article  Google Scholar 

  28. Tan DJ, Soria J, Honnery D, Edgington-Mitchell D (2017) Novel method for investigating broadband velocity fluctuations in axisymmetric screeching jets. AIAA J 55(7):2321–2334

    Article  Google Scholar 

  29. Tang SL, Antonia RA, Djenidi L, Abe H, Zhou T, Danaila L, Zhou Y (2015) Transport equation for the mean turbulent energy dissipation rate on the centreline of a fully developed channel flow. J Fluid Mech 777:151–177

    MathSciNet  Article  Google Scholar 

  30. Tinney CE, Glauser MN, Ukeiley LS (2008) Low-dimensional characteristics of a transonic jet. Part 1. Proper orthogonal decomposition. J Fluid Mech 612:107–141

    Article  Google Scholar 

  31. Weightman JL, Amili O, Honnery D, Edgington-Mitchell DM, Soria J (2017b) On the effects of nozzle lip thickness on the azimuthal modeselection of a supersonic impinging flow. In: 23rd AIAA/CEASAeroacoustics conference, p 3031

  32. Weightman JL, Amili O, Honnery D, Soria J, Edgington-Mitchell D (2016) Supersonic jet impingement on a cylindrical surface. In: 22nd AIAA/CEAS aeroacoustics conference, p 2800

  33. Weightman JL, Amili O, Honnery D, Soria J, Edgington-Mitchell D (2017a) An explanation for the phase lag in supersonic jet impingement. J Fluid Mech. https://doi.org/10.1017/jfm.2017.37

    MathSciNet  Article  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by an Australian Research Council Discovery Project (DP160102833). This research was undertaken with the assistance of resources provided at the NCI National Facility systems at the Australian National University through the National Computational Merit Allocation Scheme supported by the Australian Government.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Joel L Weightman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Weightman, J.L., Amili, O., Honnery, D. et al. Signatures of shear-layer unsteadiness in proper orthogonal decomposition. Exp Fluids 59, 180 (2018). https://doi.org/10.1007/s00348-018-2639-4

Download citation