Experiments in Fluids

, 59:34 | Cite as

MRI temperature and velocity measurements in a fluid layer with heat transfer

Research Article
  • 81 Downloads

Abstract

Magnetic resonance thermometry (MRT) is an innovative technique which can provide 2D and 3D temperature measurements using magnetic resonance imaging (MRI). Despite the powerful advantages of MRT, this technique is sparcely developed and used in the engineering sciences. In this paper, we investigate the possibility to measure temperatures with MRI in a fluid layer submitted to heat transfer. By imposing a vertical temperature gradient, we study the temperature fields in both conductive and convective regimes. The temperature fields are obtained by measuring the transverse relaxation time \(T_2\) in glycerol, a Newtonian fluid. The MRT protocol is described in detail and the results are presented. We show that for a conductive regime, temperature measurements are in very good agreement with the theoretical profile. In the convective regime, when comparing the temperature and velocity fields obtained by MRI, we get an excellent agreement in terms of flow structure. Temperature uncertainties are found to be less than \(1 \,^{\circ }\hbox {C}\) for all our results.

Supplementary material

Supplementary material 1 (AVI 332 kb)

References

  1. Bernstein MA, King KF, Zhou XJ (2004) Handbook of MRI pulse sequences. Elsevier, AmsterdamGoogle Scholar
  2. Bloembergen N, Purcell EM, Pound RV (1948) Relaxation effects in nuclear magnetic resonance absorption. Phys Rev 73(7):679–712CrossRefGoogle Scholar
  3. Buchenberg WB, Wassermann F, Grundmann S, Jung B, Simpson R (2016) Acquisition of 3D temperature distributions in fluid flow using proton resonance frequency thermometry. Magn Reson Med 76:145–155CrossRefGoogle Scholar
  4. Buell JC, Catton I (1983) The effect of wall conduction on the stability of a fluid in a right circular cylinder heated from below. ASME J Heat Transf 105(2):255–260CrossRefGoogle Scholar
  5. Childs PR, Greenwood JR, Long CA (2000) Review of temperature measurement. Rev Sci Instrum 71:2959–2978CrossRefGoogle Scholar
  6. Dabiri D (2009) Digital particle image thermometry/velocimetry: a review. Exp Fluids 46:191–241CrossRefGoogle Scholar
  7. Darbouli M, Métivier C, Leclerc S et al (2016) Natural convection in shear-thinning fluids: experimental investigations by MRI. Int J Heat Mass Transf 95:742–754CrossRefGoogle Scholar
  8. Delannoy J, Ching-Nien C, Turner R, Levin RL, Le Bihan D (1991) Noninvasive temperature imaging using diffusion MRI. Magn Reson Med 19:333–339CrossRefGoogle Scholar
  9. Hindman JC (1966) Proton resonance shift of water in gas and liquid states. J Chem Phys 44:4582–4592CrossRefGoogle Scholar
  10. Hébert F, Hufschmid R, Scheel J, Ahlers G (2010) Onset of Rayleigh–Bénard convection in cylindrical containers. Phys Rev E 81:046318CrossRefGoogle Scholar
  11. Ishihara Y, Calderon A, Watanabe H (1995) A precise and fast temperature mapping using water proton chemical shift. Magn Reson Med 34:814–823CrossRefGoogle Scholar
  12. Kruk D, Korpala A, Rossler E, Earle KA, Medyfki W, Moscicki J (2012) \({}^1\)H NMR relaxation in glycerol solutions of nitrodide radicals: effects of translational and rotational dynamics. J Chem Phys 136:114504 1-8Google Scholar
  13. Newman AA (1968) Glycerol. CRC Press, Boca RatonGoogle Scholar
  14. Parker DL (1984) Applications of NMR imaging in hyperthermia: an evaluation of the potential for localized tissue heating and noninvasive temperature monitoring. IEEE Trans Biomed Eng 31:161–167CrossRefGoogle Scholar
  15. de Poorter J, de Wagter C, de Deene Y, Thomsen C, Stahlberg F, Achten E (1995) Noninvasive MRI thermometry with the proton resonance frequency (PRF) method: in vivo results in human muscle. Magn Reson Med 33:74–81CrossRefGoogle Scholar
  16. Quesson B, de Zwart JA, Moonen CTW (2000) Magnetic resonance temperature imaging for guidance of thermotherapy. J Magn Reson Imaging 12:525–533CrossRefGoogle Scholar
  17. Rayleigh L (1916) On convective currents in a horizontal layer of fluid when the higher temperature is on the under side. Philos Mag 32:529–546CrossRefMATHGoogle Scholar
  18. Rieke V, Pauly KB (2008) MR thermometry. J Magn Reson Imaging 27:376–390CrossRefGoogle Scholar
  19. Salameh W (2011) Imagerie par résonance magnétique nucléaire pour la vélocimétrie d’un écoulement en milieu poreux, PhD thesis, Institut National Polytechnique de LorraineGoogle Scholar
  20. Schluter A, Lortz D, Busse F (1965) On the stability of steady finite amplitude convection. J Fluid Mech 23:129–144MathSciNetCrossRefMATHGoogle Scholar
  21. Shapiro EM, Borthakur A, Shapiro MJ, Reddy R, Leigh JS (2002) Fast MRI of RF heating via phase difference mapping. Magn Reson Med 47:492–498CrossRefGoogle Scholar
  22. Spirnak JR, Samland MC, Tremont BG, McQuirter AL, Williams ET, Benson MJ, Van Poppel BP, Verhulst CM, Elkins CJ, Burton LS, Eaton JK, Owkes M (2016) Validation of magnetic resonance thermometry through experimental and computational approaches, AIAA 2016-4741, AIAA propulsion and energy forum, 25-27 July, 52nd AIAA/SAE:ASEE Joint Propulsion Conference, Salt LakeGoogle Scholar
  23. Stasiek J (1997) Thermochromic liquid crystals and true colour image processing in heat transfer and fluid-flow research. Heat Mass Transf 33:27–39CrossRefGoogle Scholar
  24. Stengel KC, Oliver DS, Booker JR (1982) Onset of convection in a variable-viscosity fluid. J Fluid Mech 120:411–431CrossRefMATHGoogle Scholar
  25. Turner R, Streicher M (2012) Measuring temperature using MRI: a powerful and versatile technique. Magn Reson Matter Phys 25:1–3CrossRefGoogle Scholar
  26. Weber M, Kimmich R (2002) Rayleigh–Bénard percolation transition in thermal convection in porous media: computational fluid dynamics, NMR velocity mapping, NMR temperature mapping. Phys Rev E 66:056301 1–056301 13Google Scholar
  27. Williams ET, Spirnak JR, Samland MC, Tremont BG, McQuirter AL, Verhulst CM, Van Poppel BP, Benson MJ, Elkins CJ, Burton LS, Eaton JK (2016) Magnetic resonance thermometry experimental setup: a portable heat transfer experiment. In: Proceedings of the ASMA 2016 IMECE, 11-17 Nov, PhoenixGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.LEMTA (UMR 7563)–CNRS–Universtité de LorraineVandoeuvre-lès-NancyFrance

Personalised recommendations