Skip to main content
Log in

Separation control with fluidic oscillators in water

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

An Erratum to this article was published on 06 September 2017

This article has been updated

Abstract

The present study assesses the applicability of fluidic oscillators for separation control in water. The first part of this work evaluates the properties of the fluidic oscillators including frequency, cavitation effects, and exerted thrust. Derived from the governing internal dynamics, the oscillation frequency is found to scale directly with the jet’s exit velocity and the size of the fluidic oscillator independent of the working fluid. Frequency data from various experiments collapse onto a single curve. The occurrence of cavitation is examined by visual inspection and hydrophone measurements. The oscillation frequency is not affected by cavitation because it does not occur inside the oscillators. The spectral information obtained with the hydrophone provide a reliable indicator for the onset of cavitation at the exit. The performance of the fluidic oscillators for separation control on a bluff body does not seem to be affected by the presence of cavitation. The thrust exerted by an array of fluidic oscillators with water as the working fluid is measured to be even larger than theoretically estimated values. The second part of the presented work compares the performance of fluidic oscillators for separation control in water with previous results in air. The array of fluidic oscillators is installed into the rear end of a bluff body model. The drag improvements based on force balance measurements agree well with previous wind tunnel experiments on the same model. The flow field is examined by pressure measurements and with particle image velocimetry. Similar performance and flow field characteristics are observed in both water and air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Change history

  • 06 September 2017

    An erratum to this article has been published.

References

  • Ahmed SR, Ramm G, Faltin G (1984) Some salient features of the time-averaged ground vehicle wake. SAE technical paper (1999-01-0812). doi:10.4271/840300

  • Aoki K, Miyata H, Kanai M, Hanaoka Y, Zhu M (1992) A water-basin test technique for the aerodynamic design of road vehicles. SAE technical paper (920348). doi:10.4271/920348

  • Barros D, BorTe J, Noack BR, Spohn A, Ruiz T (2016) Bluff body drag manipulation using pulsed jets and coanda effect. J Fluid Mech 805:422–459. doi:10.1017/jfm.2016.508

    Article  MathSciNet  Google Scholar 

  • Browand F, Radovich C, Boivin M (2005) Fuel savings by means of flaps attached to the base of a trailer: field test results. SAE technical paper (2005-01-1016). doi:10.4271/2005-01-1016

  • Cattafesta LN III, Sheplak M (2011) Actuators for active flow control. Annu Rev Fluid Mech 43:247–272. doi:10.1146/annurev-fluid-122109-160634

    Article  MATH  Google Scholar 

  • Chaligné S, Castelain T, Michard M, Juvé D (2013) Active control of the flow behind a two-dimensional bluff body in ground proximity. C R Mec 341(3):289–297. doi:10.1016/j.crme.2012.10.043

    Article  Google Scholar 

  • Choi H, Lee J, Park H (2014) Aerodynamics of heavy vehicles. Annu Rev Fluid Mech 46:441–468. doi:10.1146/annurev-fluid-011212-140616

    Article  MathSciNet  MATH  Google Scholar 

  • Cooper KR (1985) The effect of front-edge rounding and rear-edge shaping on the aerodynamic drag of bluff vehicles in ground proximity. SAE technical paper (850288). doi:10.4271/850288

  • Franc JP, Michel JM (2006) Fundamentals of cavitation, fluid mechanics and its applications, vol 76, 1st edn. Springer, New York. doi:10.1007/1-4020-2233-6

  • Grandemange M, Gohlke M, Cadot O (2013) Turbulent wake past a three-dimensional blunt body. Part 1. Global modes and bi-stability. J Fluid Mech 722:51–84. doi:10.1017/jfm.2013.83

    Article  MATH  Google Scholar 

  • Gregory J, Tomac MN (2013) A review of fluidic oscillator development. In: AIAA 2013, 43rd AIAA fluid dynamics conference. doi:10.2514/6.2013-2474

  • Guyot D, Paschereit CO, Raghu S (2008) A fluidic actuator for active combustion control. In: ASME turbo expo 2008: power for land, sea, and air, American Society of Mechanical Engineers. doi:10.1115/GT2008-50797

  • Gad-el Hak M (1987) The water towing tank as an experimental facility. Exp Fluids 5(5):289–297. doi:10.1007/BF00277707

    Article  Google Scholar 

  • Gad-el Hak M (1989) Flow control. Appl Mech Rev 42(10):261–293. doi:10.1115/1.3152376

    Article  Google Scholar 

  • Jönsson M, Wagner C, Loose S (2014) Particle image velocimetry of the underfloor flow for generic high-speed train models in a water towing tank. Proc Inst Mech Eng Part F 228(2):194–209. doi:10.1177/0954409712470607

    Article  Google Scholar 

  • Larsson L, Hammar L, Nilsson LU, Berndtsson A, Knutson K, Danielson H (1989) A study of ground simulation-correlation between wind-tunnel and water-basin tests of a full-scale car. SAE technical paper (890368). doi:10.4271/890368

  • Malavasi S, Blois G (2007) Influence of the free surface on the flow pattern around a rectangular cylinder. In: 9th international symposium on fluid control, measurements and visualization. doi:10.1.1.503.4607

  • Malavasi S, Guadagnini A (2007) Interactions between a rectangular cylinder and a free-surface flow. J Fluids Struct 23(8):1137–1148. doi:10.1016/j.jfluidstructs.2007.04.002

    Article  Google Scholar 

  • Mansoorzadeh S, Javanmard E (2014) An investigation of free surface effects on drag and lift coefficients of an autonomous underwater vehicle (auv) using computational and experimental fluid dynamics methods. J Fluids Struct 51:161–171. doi:10.1016/j.jfluidstructs.2014.09.001

    Article  Google Scholar 

  • Metka M, Gregory J, Sassoon A, McKillen J (2015) Scaling considerations for fluidic oscillator flow control on the square-back Ahmed vehicle model. SAE Int J Passeng Cars-Mech Syst 8:328–337. doi:10.4271/2015-01-1561

    Article  Google Scholar 

  • Nayeri CN, Glas J, Paschereit CO (2016) Towing tank experiments for bluff body aerodynamics. In: The aerodynamics of heavy vehicles III. Springer, New York, pp. 303–308. doi:10.1007/978-3-319-20122-1_19

  • Ostermann F, Woszidlo R, Nayeri CN, Paschereit CO (2015) Experimental comparison between the flow field of two common fluidic oscillator designs. In: AIAA 2015, 53rd AIAA aerospace sciences meeting. doi:10.2514/6.2015-0781

  • Ostermann F, Woszidlo R, Nayeri CN, Paschereit CO (2016) The time-resolved flow field of a jet emitted by a fluidic oscillator into a crossflow. In: AIAA 2016, 54th AIAA aerospace sciences meeting. doi:10.2514/6.2016-0345

  • Pack Melton LG, Koklu M (2016) Active flow control using sweeping jet actuators on a semi-span wing model. In: AIAA 2016, 54th AIAA aerospace sciences meeting. doi:10.2514/6.2016-1817

  • Phillips E, Woszidlo R, Wygnanski IJ (2010) The dynamics of separation control on a rapidly actuated flap. In: 5th flow control conference, fluid dynamics and co-located conferences. doi:10.2514/6.2010-4246

  • Raman G, Raghu S (2004) Cavity resonance suppression using miniature fluidic oscillators. AIAA J 42(12):2608–2612. doi:10.2514/1.521

    Article  Google Scholar 

  • Schmidt HJ, Woszidlo R, Nayeri CN, Paschereit CO (2015) Drag reduction on a rectangular bluff body with base flaps and fluidic oscillators. Exp Fluids 56(7):151. doi:10.1007/s00348-015-2018-3

    Article  Google Scholar 

  • Schmidt HJ, Woszidlo R, Nayeri CN, Paschereit CO (2016) Fluidic oscillators for bluff body drag reduction in water. In: AIAA 2016, 54th AIAA aerospace sciences meeting. doi:10.2514/6.2016-0591

  • Seele R, Graff E, Lin J, Wygnanski IJ (2013) Performance enhancement of a vertical tail model with sweeping jet actuators. In: AIAA 2013, 51st AIAA aerospace sciences meeting. doi:10.2514/6.2013-411

  • Seifert A, Shtendel T, Dolgopyat D (2015) From lab to full scale active flow control drag reduction: how to bridge the gap? J Wind Eng Ind Aerod 147:262–272. doi:10.1016/j.jweia.2015.09.012

    Article  Google Scholar 

  • Stouffer RD, Bower R (1998) Fluidic flow meter with fiber optic sensor. US Patent 5,827,976

  • Tewes P, Taubert L, Wygnanski IJ (2010) On the use of sweeping jets to augment the lift of a lambda-wing. In: AIAA 2010, 28th AIAA aerospace sciences meeting. doi:10.2514/6.2010-4689

  • Van Raemdonck GMR, Van Tooren MJL (2008) Time-averaged phenomenological investigation of a wake behind a bluff body. In: Proc. bluff bodies aerodynamics & applications VI international colloquium

  • Von Gosen F, Ostermann F, Woszidlo R, Nayeri CN, Paschereit CO (2015) Experimental investigation of compressibility effects in a fluidic oscillator. In: AIAA 2015, 53rd AIAA aerospace sciences meeting. doi:10.2514/6.2015-0782

  • Woszidlo R, Wygnanski IJ (2011) Parameters governing separation control with sweeping jet actuators. In: AIAA 2011, 29th AIAA applied aerodynamics conference. doi:10.2514/6.2011-3172

  • Woszidlo R, Nawroth H, Raghu S, Wygnanski IJ (2010) Parametric study of sweeping jet actuators for separation control. In: AIAA 2010, 5th AIAA flow control conference. doi:10.2514/6.2010-4247

  • Woszidlo R, Stumper T, Nayeri CN, Paschereit CO (2014) Experimental study on bluff body drag reduction with fluidic oscillators. In: AIAA 2014, 52nd AIAA Aerospace and science meeting. doi:10.2514/6.2014-0403

  • Woszidlo R, Ostermann F, Nayeri CN, Paschereit CO (2015) The time-resolved natural flow field of a fluidic oscillator. Exp Fluids 56(6):125. doi:10.1007/s00348-015-1993-8

    Article  Google Scholar 

  • Zhang D, Liu ZP, Li YM (2002) Cavitation monitoring by means of acustic approach. In: Advances in fluid modeling and turbulence measurements, pp 249–255. doi:10.1142/9789812777591_0030

Download references

Acknowledgements

This work is part of the research project “Investigation of the Unsteady Wake behind a Generic Tractor-Trailer with Different Boundary Conditions” (PA 920/26-1). The authors would like to thank the German Science Foundation (DFG) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. -J. Schmidt.

Additional information

An erratum to this article is available at https://doi.org/10.1007/s00348-017-2414-y.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, H.J., Woszidlo, R., Nayeri, C.N. et al. Separation control with fluidic oscillators in water. Exp Fluids 58, 106 (2017). https://doi.org/10.1007/s00348-017-2392-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-017-2392-0

Navigation