Skip to main content
Log in

The Earth’s mantle in a microwave oven: thermal convection driven by a heterogeneous distribution of heat sources

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Convective motions in silicate planets are largely driven by internal heat sources and secular cooling. The exact amount and distribution of heat sources in the Earth are poorly constrained and the latter is likely to change with time due to mixing and to the deformation of boundaries that separate different reservoirs. To improve our understanding of planetary-scale convection in these conditions, we have designed a new laboratory setup allowing a large range of heat source distributions. We illustrate the potential of our new technique with a study of an initially stratified fluid involving two layers with different physical properties and internal heat production rates. A modified microwave oven is used to generate a uniform radiation propagating through the fluids. Experimental fluids are solutions of hydroxyethyl cellulose and salt in water, such that salt increases both the density and the volumetric heating rate. We determine temperature and composition fields in 3D with non-invasive techniques. Two fluorescent dyes are used to determine temperature. A Nd:YAG planar laser beam excites fluorescence, and an optical system, involving a beam splitter and a set of colour filters, captures the fluorescence intensity distribution on two separate spectral bands. The ratio between the two intensities provides an instantaneous determination of temperature with an uncertainty of 5% (typically 1K). We quantify mixing processes by precisely tracking the interfaces separating the two fluids. These novel techniques allow new insights on the generation, morphology and evolution of large-scale heterogeneities in the Earth’s lower mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Andrews D (1989) A unified theory of radiative and radiationless molecular energy transfer. Chem Phys 135(2):195–201. doi:10.1016/0301-0104(89)87019-3

    Article  Google Scholar 

  • Arevalo R, McDonough WF, Stracke A, Willbold M, Ireland TJ, Walker RJ (2013) Simplified mantle architecture and distribution of radiogenic power. Geochem Geophys Geosyst 14:2265–2285. doi:10.1002/ggge.20152

    Article  Google Scholar 

  • Boyet M, Carlson RW (2005) 142Nd evidence for early (>4.53 ga) global differentiation of the silicate earth. Science 309:576–581. doi:10.1126/science.1113634

    Article  Google Scholar 

  • Bruchhausen M, Guillard F, Lemoine F (2005) Instantaneous measurement of two-dimensional temperature distributions by means of two-color planar laser induced fluorescence (PLIF). Exp Fluids 38:123–131. doi:10.1007/s00348-004-0911-2

    Article  Google Scholar 

  • Coppeta J, Rogers C (1998) Dual emission laser induced fluorescence for direct planar scalar behavior measurements. Exp Fluids 25:1–15

    Article  Google Scholar 

  • Cottaar S, Lekic V (2016) Morphology of seismically slow lower-mantle structures. Geophys J Int 207:1122–1136. doi:10.1093/gji/ggw324

    Article  Google Scholar 

  • Dadarlat D, Neamtu C (2009) High performance photopyroelectric calorimetry of liquids. Acta Chim Slov 56:225–236

    Google Scholar 

  • Davaille A (1999) Simultaneous generation of hotspots and superswells by convection in a heterogeneous planetary mantle. Nature 402:756–760. doi:10.1038/45461

    Article  Google Scholar 

  • Davaille A, Limare A (2015) 7.03 - Laboratory Studies of Mantle Convection. In: Schubert G (ed) Treatise on Geophysics, 2nd edn, Elsevier, Oxford, pp 73–144. doi:10.1016/B978-0-444-53802-4.00128-7

  • Davaille A, Girard F, Le Bars M (2002) How to anchor hotspots in a convecting mantle? Earth Planet Sci Lett 203:621–634. doi:10.1016/S0012-821X(02)00897-X

    Article  Google Scholar 

  • Davies DR, Davies JH, Hassan O, Morgan K, Nithiarasu P (2007) Investigations into the applicability of adaptive finite element methods to two-dimensional infinite Prandtl number thermal and thermochemical convection. Geochem Geophys Geosyst 8:Q05010. doi:10.1029/2006GC001470

    Google Scholar 

  • Davies DR, Goes S, Lau HCP (2015) Thermally dominated deep mantle LLSVPs: a review. Springer, Cham, pp 441–477. doi:10.1007/978-3-319-15627-9_14

  • Deschamps F, Tackley PJ (2008) Searching for models of thermo-chemical convection that explain probabilistic tomography. I. Principles and influence of rheological parameters. Phys Earth Planet Int 171:357–373. doi:10.1016/j.pepi.2008.04.016

    Article  Google Scholar 

  • Deschamps F, Tackley PJ (2009) Searching for models of thermo-chemical convection that explain probabilistic tomography. II- Influence of physical and compositional parameters. Phys Earth Planet Int 176:1–18. doi:10.1016/j.pepi.2009.03.012

    Article  Google Scholar 

  • Dziewonski AM (1984) Mapping the Lower Mantle: determination of lateral heterogeneity in P velocity up to degree and order 6. J Geophys Res 89:5929–5952. doi:10.1029/JB089iB07p05929

    Article  Google Scholar 

  • French SW, Romanowicz B (2015) Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature 525:95–99. doi:10.1038/nature14876

    Article  Google Scholar 

  • Funatani S, Fujisawa N, Ikeda H (2004) Simultaneous measurement of temperature and velocity using two-colour LIF combined with PIV with a colour CCD camera and its application to the turbulent buoyant plume. Meas Sci Technol 15:983–990. doi:10.1088/0957-0233/15/5/030

    Article  Google Scholar 

  • Garnero EJ, McNamara AK, Shim SH (2016) Continent-sized anomalous zones with low seismic velocity at the base of Earth’s mantle. Nat Geosci 9:481–489. doi:10.1038/ngeo2733

    Article  Google Scholar 

  • Geddes CD (2001) Optical halide sensing using fluorescence quenching: theory, simulations and applications - a review. Meas Sci Technol 12(9):R53

    Article  Google Scholar 

  • Gonnermann HM, Manga M, Mark Jellinek A (2002) Dynamics and longevity of an initially stratified mantle. Geophys Res Lett 29:1399. doi:10.1029/2002GL014851

    Article  Google Scholar 

  • Hishida K, Sakakibara J (2000) Combined planar laser-induced fluorescence-particle image velocimetry technique for velocity and temperature fields. Exp Fluids 29:129–140

    Article  Google Scholar 

  • Hofmann AW (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385:219–229. doi:10.1038/385219a0

    Article  Google Scholar 

  • Jaupart C, Labrosse S, Lucazeau F, Mareschal JC (2015) 7.06 - Temperatures, Heat, and Energy in the Mantle of the Earth. In: Schubert G (ed) Treatise on geophysics (2nd edn), Elsevier, Oxford, pp 223–270. doi:10.1016/B978-0-444-53802-4.00126-3

  • Javoy M, Kaminski E (2014) Earth’s Uranium and Thorium content and geoneutrinos fluxes based on enstatite chondrites. Earth Planet Sci Lett 407:1–8. doi:10.1016/j.epsl.2014.09.028

    Article  Google Scholar 

  • Jellinek AM, Manga M (2002) The influence of a chemical boundary layer on the fixity, spacing and lifetime of mantle plumes. Nature 418:760–763

    Article  Google Scholar 

  • Kaminski E, Javoy M (2013) A two-stage scenario for the formation of the Earth’s mantle and core. Earth Planet Sci Lett 365:97–107. doi:10.1016/j.epsl.2013.01.025

    Article  Google Scholar 

  • Kellogg LH, Hager BH, van der Hilst RD (1999) Compositional stratification in the deep mantle. Science 283:1881. doi:10.1126/science.283.5409.1881

    Article  Google Scholar 

  • Kulacki FA, Goldstein RJ (1972) Thermal convection in a horizontal fluid layer with uniform volumetric energy sources. J Fluid Mech 55:271–287. doi:10.1017/S0022112072001855

    Article  Google Scholar 

  • Kulacki FA, Nagle ME (1975) Natural convection in a horizontal fluid layer with volumetric energy sources. J Heat Transf 97:204–211. doi:10.1115/1.3450342

    Article  Google Scholar 

  • Labrosse S, Hernlund JW, Coltice N (2007) A crystallizing dense magma ocean at the base of the Earth’s mantle. Nature 450:866–869. doi:10.1038/nature06355

    Article  Google Scholar 

  • Le Bars M, Davaille A (2002) Stability of thermal convection in two superimposed miscible viscous fluids. J Fluid Mech 471:339–363. doi:10.1017/S0022112002001878

    MathSciNet  MATH  Google Scholar 

  • Le Bars M, Davaille A (2004a) Large interface deformation in two-layer thermal convection of miscible viscous fluids. J Fluid Mech 499:75–110. doi:10.1017/S0022112003006931

    Article  MATH  Google Scholar 

  • Le Bars M, Davaille A (2004b) Whole layer convection in a heterogeneous planetary mantle. J Geophys Res Solid Earth 109:B03403. doi:10.1029/2003JB002617

    Google Scholar 

  • Lekic V, Cottaar S, Dziewonski A, Romanowicz B (2012) Cluster analysis of global lower mantle tomography: a new class of structure and implications for chemical heterogeneity. Earth Planet Sci Lett 357:68–77. doi:10.1016/j.epsl.2012.09.014

    Article  Google Scholar 

  • Lemoine F, Antoine Y, Wolff M, Lebouche M (1999) Simultaneous temperature and 2D velocity measurements in a turbulent heated jet using combined laser-induced fluorescence and LDA. Exp Fluids 26:315–323

    Article  Google Scholar 

  • Leng W, Zhong S (2011) Implementation and application of adaptive mesh refinement for thermochemical mantle convection studies. Geochem Geophys Geosyst 12:Q04006. doi:10.1029/2010GC003425

    Google Scholar 

  • Li M, McNamara AK, Garnero EJ (2014) Chemical complexity of hotspots caused by cycling oceanic crust through mantle reservoirs. Nat Geosci 7:366–370. doi:10.1038/ngeo2120

    Article  Google Scholar 

  • Limare A, Surducan E, Surducan V, Neamtu C, di Giuseppe E, Vilella K, Farnetani CG, Kaminski E, Jaupart C (2013) Microwave-based laboratory experiments for internally-heated mantle convection. In: Lazar MD, Garabagiu S (eds) American Institute of Physics Conference Series, American Institute of Physics Conference Series, vol 1565, pp 14–18. doi:10.1063/1.4833687

  • Limare A, Vilella K, Di Giuseppe E, Farnetani CG, Kaminski E, Surducan E, Surducan V, Neamtu C, Fourel L, Jaupart C (2015) Microwave-heating laboratory experiments for planetary mantle convection. J Fluid Mech 777:50–67. doi:10.1017/jfm.2015.347

    Article  Google Scholar 

  • López Arbeloa F, Ruiz Ojeda P, López Arbeloa I (1989) Fluorescence self-quenching of the molecular forms of rhodamine b in aqueous and ethanolic solutions. J Lumin 44:105–112. doi:10.1016/0022-2313(89)90027-6

    Article  Google Scholar 

  • Masters G, Laske G, Bolton H, Dziewonski A (2000) The relative behavior of shear velocity, bulk sound speed, and compressional velocity in the mantle: Implications for chemical and thermal structure. Wash DC Am Geophys Union Geophys Monogr Ser 117:63–87. doi:10.1029/GM117p0063

    Google Scholar 

  • McDonough W, Sun S (1995) The composition of the earth. Chem Geol 120(3):223–253. doi:10.1016/0009-2541(94)00140-4

    Article  Google Scholar 

  • McNamara AK, Zhong S (2005) Thermochemical structures beneath Africa and the Pacific Ocean. Nature 437:1136–1139. doi:10.1038/nature04066

    Article  Google Scholar 

  • Moreira M, Breddam K, Curtice J, Kurz MD (2001) Solar neon in the Icelandic mantle: new evidence for an undegassed lower mantle. Earth Planet Sci Lett 185:15–23. doi:10.1016/S0012-821X(00)00351-4

    Article  Google Scholar 

  • Nakagawa T, Tackley PJ (2014) Influence of combined primordial layering and recycled MORB on the coupled thermal evolution of Earth’s mantle and core. Geochem Geophys Geosyst 15:619–633. doi:10.1002/2013GC005128

    Article  Google Scholar 

  • Roberts PH (1967) Convection in horizontal layers with internal heat generation. Theory. J Fluid Mech 30:33–49. doi:10.1017/S0022112067001284

    Article  Google Scholar 

  • Sakakibara J, Adrian RJ (1999) Whole field measurement of temperature in water using two-color laser induced fluorescence. Exp Fluids 26:7–15

    Article  Google Scholar 

  • Sakakibara J, Adrian RJ (2004) Measurement of temperature field of a Rayleigh–Bénard convection using two-color laser-induced fluorescence. Exp Fluids 37:331–340. doi:10.1007/s00348-004-0821-3

    Article  Google Scholar 

  • Schwiderski EW, Schwab HJA (1971) Convection experiments with electrolytically heated fluid layers. J Fluid Mech 48:703–719. doi:10.1017/S0022112071001812

    Article  Google Scholar 

  • Surducan E, Surducan V (2014) Device for connecting a camera to a treatment enclosure under power microwave field for taking real time images of a processed sample (in romanian). In: Buletinul Oficial de Proprietate Industrială, Bucharest, Romania, p 48. http://www.osim.ro/publicatii/brevete/bopi_2014/bopi_inv_02_2014.pdf, patent pending RO129276 (A2)

  • Surducan E, Surducan V, Neamtu C (2012) Measurements of the liquids dielectric properties changes with temperature for microwaves power processing optimization. In: Lazar MD (ed) American institute of physics conference series, vol 1425, pp 85–88. doi:10.1063/1.3681973

  • Surducan E, Surducan V, Limare A, Neamtu C, Di Giuseppe E (2014) Microwave heating device for internal heating convection experiments, applied to Earth’s mantle dynamics. Rev Sci Instrum 85(12):124702. doi:10.1063/1.4902323

    Article  Google Scholar 

  • Sutton JA, Fisher BT, Fleming JW (2008) A laser-induced fluorescence measurement for aqueous fluid flows with improved temperature sensitivity. Exp Fluids 45:869–881. doi:10.1007/s00348-008-0506-4

    Article  Google Scholar 

  • Tackley PJ (2002) Strong heterogeneity caused by deep mantle layering. Geochem Geophys Geosyst 3:1024. doi:10.1029/2001GC000167

    Article  Google Scholar 

  • Takahashi J, Tasaka Y, Murai Y, Takeda Y, Yanagisawa T (2010) Experimental study of cell pattern formation induced by internal heat sources in a horizontal fluid layer. Int J Heat Mass Transf 53(7–8):1483–1490. doi:10.1016/j.ijheatmasstransfer.2009.11.048

    Article  MATH  Google Scholar 

  • Tan E, Gurnis M (2005) Metastable superplumes and mantle compressibility. Geophys Res Lett 32:L20307. doi:10.1029/2005GL024190

    Article  Google Scholar 

  • Tasaka Y, Kudoh Y, Takeda Y, Yanagisawa T (2005) Experimental investigation of natural convection induced by internal heat generation. In: Takeda Y (ed) Journal of physics conference series, vol 14, pp 168–179. doi:10.1088/1742-6596/14/1/021

  • Torsvik TH, Steinberger B, Cocks LRM, Burke K (2008) Longitude: linking earth’s ancient surface to its deep interior. Earth Planet Sci Lett 276:273–282. doi:10.1016/j.epsl.2008.09.026

    Article  Google Scholar 

  • Tritton DJ, Zarraga MN (1967) Convection in horizontal layers with internal heat generation. Experiments. J Fluid Mech 30:21–31. doi:10.1017/S0022112067001272

    Article  Google Scholar 

  • van Keken PE, King SD, Schmeling H, Christensen UR, Neumeister D, Doin MP (1997) A comparison of methods for the modeling of thermochemical convection. J Geophys Res 102:22,477–22,495. doi:10.1029/97JB01353

  • Wen L, Silver P, James D, Kuehnel R (2001) Seismic evidence for a thermo-chemical boundary at the base of the Earth’s mantle. Earth Planet Sci Lett 189:141–153. doi:10.1016/S0012-821X(01)00365-X

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the PNP-INSU 2016 Grant as well as the ANR-11-IS04-0004 project for the French team and by the 1 RO-FR-22-2011 Romanian–French bilateral project for the Romanian team. We thank the laboratory of Géochimie des Eaux in IPGP and especially Pr. Marc Benedetti for guiding us with insightful information on how to use their spectrofluorometers in order to analyze the fluorescent properties of the dyes and filters used in this study. IPGP contribution No 3855.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loïc Fourel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fourel, L., Limare, A., Jaupart, C. et al. The Earth’s mantle in a microwave oven: thermal convection driven by a heterogeneous distribution of heat sources. Exp Fluids 58, 90 (2017). https://doi.org/10.1007/s00348-017-2381-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-017-2381-3

Navigation