Suppressing prompt splash with polymer additives

  • E. J. VegaEmail author
  • A. A. Castrejón-Pita
Research Article


Splash suppression during drop impact continues to be a grand challenge. To date, only a few techniques for the complete suppression of splash exist. Reducing the ambient pressure and using complex surfaces (microstructured and/or soft) are two of the recently discovered ones which may not be very practical in many technological processes. The idea of using additives directly into the liquid used to produce the drops, to inhibit this undesirable phenomenon, is, therefore, desired. Prompt splash is a type of splashing that releases diminutive droplets at high speeds from the tip of the lamella at the spreading liquid-substrate contact line immediately after the impact (within the first 10 μm), without generating the typical thin-sheet or corona. Prompt splash remained hidden for many years until high-speed imaging allowed for its visualisation. Here, we demonstrate that by adding very low amounts of polymer (around 0.01 wt%) into normally splashing water droplets a reduction and even a complete suppression of the prompt splash is observed. In this work, a systematic experimental study of the impact of viscoelastic drops, by varying size, impact velocity, and the “degree” of viscoelasticity, is conducted. When capillary forces are insufficient to maintain the integrity of the drop, elastic forces seem to pull the attached small droplets/fingers back to the lamella preventing their ejection and, therefore, inhibiting prompt splash. However, surprisingly, larger quantities of the polymer additive lead to a secondary transition, in which another, more common, type of splash is induced: corona splash.


Deborah Number Drop Impact Secondary Droplet Satellite Droplet Systematic Experimental Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Partial support from the Spanish Ministry of Science and Education (Grant No. DPI2013-46485), Junta de Extremadura (Grant No. GR10047), and mobility grant of the program “Jose Castillejo 2015, ref. JC2015-00129” from Spanish Ministry of Education, Culture and Sport is gratefully acknowledged too. AACP received funding from the Royal Society via a University Research Fellowship and from the John Fell Oxford University Press (OUP) Research Fund.


  1. An SM, Lee SY (2012) Exp. Therm. Fluid Sci. 38:140CrossRefGoogle Scholar
  2. An SM, Lee SY (2012) Exp. Therm. Fluid Sci. 37:37CrossRefGoogle Scholar
  3. Andrade R, Skurtys O, Osorio F (2015) J. Food Eng. 157:70CrossRefGoogle Scholar
  4. Bartolo D, Boudaoud A, Narcy G, Bonn D (2007) Phys. Rev. Lett. 99:174502CrossRefGoogle Scholar
  5. Bergeron V (2003) C. R. Physique 4:211CrossRefGoogle Scholar
  6. Bergeron V, Bonn D, Martin JY, Vovelle L (2000) Nature 405:772CrossRefGoogle Scholar
  7. Bertola V (2004) Exp. Fluids 37:653CrossRefGoogle Scholar
  8. Bertola V (2008) Recent Patents on Mechanical Engineering 1:167CrossRefGoogle Scholar
  9. Bertola V (2010) Colloid Surf. A-Physicochem. Eng. Asp. 363:135CrossRefGoogle Scholar
  10. Bertola V (2014) Exp. Therm. Fluid Sci. 52:259CrossRefGoogle Scholar
  11. Bertola V, Sefiane K (2005) Phys. Fluids 17:108104CrossRefGoogle Scholar
  12. Bertola V, Wang M (2015) Colloid Surf. A-Physicochem. Eng. Asp. 481:600CrossRefGoogle Scholar
  13. Bertola V, Marengo M (2012) Single drop impacts of complex fluids: a review. In: Ferrari M, Liggieri L, Miller R (eds) Drops and bubbles in contact with solid surfaces, CRC Press, pp 267–298Google Scholar
  14. Bolleddula D, Berchielli A, Aliseda A (2010) Adv. Colloid Interface Sci. 159:144CrossRefGoogle Scholar
  15. Boyer F, Sandoval-Nava E, Snoeijer JH, Dijksman JF, Lohse D (2016) Physical Review Fluids 1:013901CrossRefGoogle Scholar
  16. Cabezas MG, Bateni A, Montanero JM, Neumann AW (2005) Colloids Surf. A 255:193CrossRefGoogle Scholar
  17. Crooks R, Boger DV (2000) J. Rheol. 44:973CrossRefGoogle Scholar
  18. Crooks R, Cooper-Whitez J, Boger DV (2001) Chem. Eng. Sci. 56:5575CrossRefGoogle Scholar
  19. Derby B (2010) Annu. Rev. Mater. Res. 40:395CrossRefGoogle Scholar
  20. German G, Bertola V (2009) J. Phys.: Condens. Matter 21:375111Google Scholar
  21. Goldin M, Yerushalmi J, Pfeffer R, Shinnar R (1969) J. Fluid Mech. 38:689CrossRefGoogle Scholar
  22. Guémas M, Marín AG, Lohse D (2012) Soft Matter 8:10725CrossRefGoogle Scholar
  23. Howison SD, Ockendon JR, Wilson SK (1991) J. Fluid Mech. 222:215CrossRefMathSciNetGoogle Scholar
  24. Howland CJ, Antkowiak A, Castrejón-Pita JR, Howison SD, Oliver JM, Style RW, Castrejón-Pita AA (2016) Phys. Rev. Lett. 117:184502CrossRefGoogle Scholar
  25. Huh HK, Jung S, Seo KW, Lee SJ (2015) Microfluid. Nanofluid. 18:1221CrossRefGoogle Scholar
  26. Izbassarov D, Muradoglu M (2016) Physical Review Fluids 1:023302CrossRefGoogle Scholar
  27. Josserand C, Thoroddsen S (2016) Annu. Rev. Fluid Mech. 48:365CrossRefGoogle Scholar
  28. Kolinski JM, Rubinstein SM, Mandre S, Brenner MP, Weitz DA, Mahadevan L (2012) Phys. Rev. Lett. 108:074503CrossRefGoogle Scholar
  29. Laan N, de Bruin KG, Bartolo D, Josserand C, Bonn D (2014) Phys. Rev. Appl. 2:044018CrossRefGoogle Scholar
  30. Latka A, Strandburg-Peshkin A, Driscoll MM, Stevens CS, Nagel SR (2012) Phys. Rev. Lett. 109:054501CrossRefGoogle Scholar
  31. Liu Y, Tan P, Xu L (2013) J. Fluid Mech. 716:R9CrossRefGoogle Scholar
  32. Liua Y, Tana P, Xua L (2015) PNAS 112:3280CrossRefGoogle Scholar
  33. Mandre S, Brenner MP (2012) J. Fluid Mech. 690:148CrossRefMathSciNetGoogle Scholar
  34. Middleman S (1965) Chem. Eng. Sci. 20:1037CrossRefGoogle Scholar
  35. Mishra NK, Zhang Y, Ratner A (2011) Exp. Fluids 51:483CrossRefGoogle Scholar
  36. Palacios J, Hernández J, Gómez P, Zanzi C, López J (2013) Exp. Therm. Fluid Sci. 44:571CrossRefGoogle Scholar
  37. Riboux G, Gordillo JM (2014) Phys. Rev. Lett. 113:024507CrossRefGoogle Scholar
  38. Rozhkov A, Prunet-Foch B, Vignes-Adler M (2003) Phys. Fluids 15:2006CrossRefGoogle Scholar
  39. Smith MI, Bertola V (2010) Phys. Rev. Lett. 104:154502CrossRefGoogle Scholar
  40. Smith MI, Bertola V (2011) Exp. Fluids 50:1385CrossRefGoogle Scholar
  41. Smith MI, Sharp JS (2014) Langmuir 30:5455CrossRefGoogle Scholar
  42. Sousa PC, Pinho FT, Oliveira MSN, Alves MA (2015) Soft Matter 11:8856CrossRefGoogle Scholar
  43. Sousa PC, Vega EJ, Sousa RG, Montanero JM, Alves MA (2017) Rheol. Acta 56:11CrossRefGoogle Scholar
  44. Thoroddsen ST, Etoh TG, Takehara K, Ootsuka N, Hatsuki Y (2005) J. Fluid Mech. 545:203CrossRefGoogle Scholar
  45. Thoroddsen ST, Takehara K, Etoh TG (2012) J. Fluid Mech. 706:560CrossRefGoogle Scholar
  46. Williams PA, English RJ, Blanchard RL, Rose SA, Lyons L, Whitehead M (2008) Pest Manag. Sci. 64:497CrossRefGoogle Scholar
  47. Xu L (2007) Phys. Rev. E 75:056316CrossRefGoogle Scholar
  48. Yarin AL (2006) Annu. Rev. Fluid Mech. 38:159CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Depto. de Ingeniería Mecánica, Energética y de los Materiales and Instituto de Computación Científica Avanzada (ICCAEx)Universidad de Extremadura BadajozSpain
  2. 2.Department of Engineering ScienceUniversity of Oxford OxfordUK

Personalised recommendations