Skip to main content
Log in

A systematic experimental study on the evaporation rate of supercooled water droplets at subzero temperatures and varying relative humidity

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Supercooled water droplets (SWD) are present in clouds at high altitude and subjected to very low temperatures and high relative humidity. These droplets exist in a metastable state. The understanding of the evaporation of SWD at these extreme conditions is of high interest to understand rain, snow, and hail generating mechanisms in clouds. This paper focuses on the experimental results of the measurements of the evaporation rates \(\beta\) of supercooled water droplets. For this purpose, single SWDs are trapped by means of optical levitation. During the evaporation process, the elastically scattered light in the forward regime is recorded and evaluated. Experiments have been performed for different relative humidities \(\phi\) at three constant ambient temperatures, namely, \({T_\infty }=268.15;~263.15;~253.15~{\text{K}}\) (\({t_\infty } = -5;\,-10;\,-20~^{\circ}{\text{C}}\)). The experimental data agrees well with direct numerical simulations (DNS) carried out with the in-house code Free Surface 3D (FS3D) and shows that the use of a simplified model is permissible for these ambient conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\(Bi\) :

Biot number, \(Bi=\frac{{\alpha \,D}}{{6\,k}}\) [–]

\({B_Y}\) :

Spalding’s mass transfer number, \({B_Y}=\frac{{{Y_{1,\infty }}\,-\,{Y_{1,s}}}}{{{Y_{1,s}}\,-\,1}}\) [–]

\({c_{p{\text{,a}}}}\) :

Specific heat capacity of dry air [J/(kg K)]

\({c_{p{\text{,l}}}},~{c_{p{\text{,v}}}}\) :

Specific heat capacity of liquid water and water vapour [J/(kg K)]

\(D,~{D_0}\) :

Diameter, initial diameter for t = 0 [m]

\({D_{12,R}}\) :

Diffusion coefficient at reference temperature [m2/s]

\(f\) :

Focal length [m]

\({f_1},~{f_2}\) :

Volume fractions of liquid (1) and vapour (2) [–]

\(k\) :

Thermal conductivity [W/(m K)]

\({k_{\text{c}}}\) :

Mass transfer coefficient [m/s]

\({L_{\text{e}}}\) :

Specific latent heat of evaporation [J/kg]

\(n\) :

Real part of refractive index [–]

\(Nu\) :

Nusselt number, \(Nu=\frac{{\alpha \,D}}{k}\) [–]

\({M_1},{M_2}\) :

Molar mass of water and ambient gas [mol/kg]

\({p_\infty }\) :

Ambient pressure [Pa]

\({p_{1,s}},{p_{1,\infty }}\) :

Partial pressure of water at droplet surface and far away from droplet [Pa]

\({p_{\text{v}}}\) :

Saturation vapour pressure [Pa]

\({P_{\text{m}}}\) :

Mean laser power [W]

\(Pr\) :

Prandtl number, \(Pr=\frac{{\eta ~{c_{{p}}}}}{k}\) [–]

\(Re\) :

Reynolds number, \(Re=\frac{{\rho ~u~D}}{\eta }\) [–]

\(Sc\) :

Schmidt number, \(Sc=\frac{\eta }{{\rho \,{D_{12}}}}\) [–]

\(Sh\) :

Sherwood number, \(Sh=\frac{{{k_{\text{c}}}\,D}}{{{D_{12}}}}\) [-]

\(t\) :

Temperature [°C]

\(T\) :

Temperature [K]

\({T_{\text{w}}},{T_\infty }\) :

Wet-bulb temperature, ambient temperature [K]

\({T_{\text{R}}},~{T_{\text{s}}}\) :

Reference temperature, temperature at droplet surface [K]

\(u\) :

Approach velocity [m/s]

\(\dot V\) :

Volume flow rate at \(T=273.15~{\text{K}}\), \(p=1013.25~{\text{hPa}}\) [l/min]

\({X_{1,s}},{X_{1,\infty }}\) :

Molar fraction at droplet surface and far away from droplet [–]

\({Y_{1,s}},{Y_{1,\infty }}\) :

Mass fraction at droplet surface and far away from droplet [–]

\(\alpha\) :

Heat transfer coefficient [W/(m2 K)]

\(\beta\) :

Evaporation rate [m²/s]

\(\Delta\) :

Accuracy, range [–]

\(\eta\) :

Dynamic viscosity [kg/(m s)]

\(\Delta \theta\) :

Angular fringe distance [°]

\(\theta\) :

Scattering angle [°]

\({\theta _I}\) :

Observation angle of camera [°]

\(\lambda\) :

Laser wavelength [m]

\({\rho _{\text{R}}},{\rho _{\text{l}}}\) :

Density of gas vapour mixture and density of liquid droplet [kg/m3]

\(\tau\) :

Time [s]

\({\tau _{\text{t}}}\) :

Thermal time scale [s]

\(\phi\) :

Ambient relative humidity [%]

References

  • Ashkin A (2000) History of optical trapping and manipulation of small-neutral particle, atoms, and molecules. IEEE J Sel Top Quant 6:841–856. doi:10.1109/2944.902132

    Article  Google Scholar 

  • Eisenschmidt K et al (2016) Direct numerical simulations for multiphase flows: an overview of the multiphase code FS3D. Appl Math Comput 272:508–517. doi:10.1016/j.amc.2015.05.095

    MathSciNet  Google Scholar 

  • Frohn A, Roth N (2000) Dynamics of droplets. Springer, Berlin

    Book  MATH  Google Scholar 

  • Glantschnig WJ, Chen SH (1981) Light scattering from water droplets in the geometrical optics approximation. Appl Optics 20:2499–2509. doi:10.1364/AO.20.002499

    Article  Google Scholar 

  • Godsave GAE, (1953) Studies of the combustion of drops in a fuel spray-the burning of single drops of fuel. Symposium (International) on Combustion. doi:10.1016/S0082-0784(53)80107-4

  • Harvey AH, Gallagher JS, Levelt Sengers JMH (1998) Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density. J Phys Chem Ref Data 27:761–774. doi:10.1063/1.556029

    Article  Google Scholar 

  • Hase M (2005) Numerische Berechnung dreidimensionaler Transportvorgänge an angeströmten, sich verformenden Tropfen. Dissertation, University of Stuttgart

  • Hindmarsh J, Russell A, Chen X (2003) Experimental and numerical analysis of the temperature transition of a suspended freezing water droplet. Int J Heat Mass Tran 46:1199–1213. doi:10.1016/S0017-9310(02)00399-X

    Article  Google Scholar 

  • Hirt CW, Nichols BD (1987) Volume of fluid (VOF) method for dynamics of free boundaries. J Comput Phys 39:201–225. doi:10.1016/0021-9991(81)90145-5

    Article  MATH  Google Scholar 

  • Hubbard GL, Denny VE, Mills AF (1975) Droplet evaporation: Effects of transient and variable properties. Int J Heat Mass Tran 18:1003–1008. doi:10.1016/0017-9310(75)90217-3

    Article  Google Scholar 

  • Incropera FP, De Witt DP (1985) Fundamentals of heat and mass transfer, 2nd edn. Wiley, New York

    Google Scholar 

  • Johnson BR (1993) Theory of morphology-dependent resonances: shape resonances and width formulas. J Opt Soc Am A 10:343–352. doi:10.1364/JOSAA.10.000343

    Article  Google Scholar 

  • Lemmon EW, Huber ML, McLinden MO (2013) NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1, National Institute of Standards and Technology, Standard Reference Data Program. Gaithersburg

    Google Scholar 

  • Mills AF (2001) Mass Transfer, 2nd edn. Prentice Hall, Upper Saddle River, New Jersey

    Google Scholar 

  • Murphy DM, Koop T (2005) Review of the vapour pressures of ice and supercooled water for atmospheric applications. Q J Roy Meteor Soc 131:1539–1565. doi:10.1256/qj.04.94

  • Pruppacher HR, Klett JD (1997) Microphysics of clouds and precipitation, 2nd edn. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Ranz WE, Marshall JrWR (1952a) Evaporation from drops. Part I. Chem Eng Prog 48:141–146

  • Ranz WE, Marshall JrWR (1952b) Evaporation from drops. Part II. Chem Eng Prog 48:173–179

  • Rider WJ, Kothe DB (1998) Reconstructing volume tracking. J Comput Phys 141:112–152. doi:10.1006/jcph.1998.5906

    Article  MATH  MathSciNet  Google Scholar 

  • Rieber M, (2004) Numerische Modellierung der Dynamik freier Grenzflächen in Zweiphasenströmungen. Dissertation, University of Stuttgart

  • Roth N, Anders K, Frohn A (1994) Determination of size, evaporation rate and freezing of water droplets using light scattering and radiation pressure. Part Part Syst Char 11:207–211. doi:10.1002/ppsc.19940110307

  • Ruberto S, Reutzsch J, Weigand B (2016) Experimental investigation of the evaporation rate of supercooled water droplets at constant temperature and varying relative humidity. Int Commun Heat Mass 77:190–194. doi:10.1016/j.icheatmasstransfer.2016.08.005

  • Schlottke J, Weigand B (2008) Direct numerical simulation of evaporating droplets. J Comput Phys 227:5215–5237. doi:10.1016/j.jcp.2008.01.042

    Article  MATH  MathSciNet  Google Scholar 

  • Tong HJ, Ouyang B, Nikolovski N, Lienhard DM, Pope FD, Kalberer M (2015) A new electrodynamic balance (EDB) design for low-temperature studies: application to immersion freezing of pollen extract bioaerosols. Atmos Measure Tech 8:1183–1195. doi:10.5194/amt-8-1183-2015

  • Wilms J (2005) Evaporation of multicomponent droplets. Dissertation, University of Stuttgart, doi:10.18419/opus-3711

  • Wölk J, Strey R (2001) Homogeneous nucleation of H2O and D2O in comparison: The isotope effect. J Phys Chem B 105:1683–11701. doi:10.1021/jp0115805

    Article  Google Scholar 

  • Yang G, Guo K, Li N (2011) Freezing mechanism of supercooled water droplet impinging on metal surfaces. Int J Refrig 34:2007–2017. doi:10.1016/j.ijrefrig.2011.07.001

    Article  Google Scholar 

Download references

Acknowledgements

This work is done within the Collaborative Research Centre Transregio SFB-TRR 75 “Droplet Dynamics under Extreme Ambient Conditions”. The authors kindly acknowledge the financial support of the German Research Foundation (DFG). The SFB-TRR 75 shares representative experimental and numerical data for interested researchers. Further download and registration information can be found on http://www.sfbtrr75.de.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ruberto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruberto, S., Reutzsch, J., Roth, N. et al. A systematic experimental study on the evaporation rate of supercooled water droplets at subzero temperatures and varying relative humidity. Exp Fluids 58, 55 (2017). https://doi.org/10.1007/s00348-017-2339-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-017-2339-5

Keywords

Navigation