Skip to main content
Log in

Hydrodynamics of foams

  • Review Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

This brief review article is devoted to all the aspects related to hydrodynamics of foams. For this reason, we focused at first on the methods for studying the basic structural units of the foams—the foam films (FF) and the Plateau borders (PB), thus reviewing the literature about their drainage. After this, we scrutinized in detail the Derjaguin’s works on the electrostatic disjoining pressure along with its Langmuir’s interpretation, the microscopic and macroscopic approaches in the theory of the van der Waals disjoining pressure, the DLVO theory, the steric disjoining pressure of de Gennes, and the more recent works on non-DLVO forces. The basic methods for studying of foam drainage are presented as well. Engineering and other applications of foam are reviewed as well. All these aspects are presented from retrospective and perspective viewpoints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Reprinted with the permission from Elsevier

Fig. 22
Fig. 23

Reprinted with the permission from American Chemical Society

Fig. 24

Reprinted with the permission from American Chemical Society

Fig. 25
Fig. 26
Fig. 27

Reprinted with the permission from American Chemical Society

Fig. 28
Fig. 29

Similar content being viewed by others

References

  • Alargova RG, Warhadpande DS, Paunov VN, Velev OD (2004) Foam superstabilization by polymer microrods. Langmuir 20:10371–10374

    Article  Google Scholar 

  • Aronson MP (1986) Influence of hydrophobic particles on the foaming of aqueous surfactant solutions. Langmuir 2:653–659

    Article  Google Scholar 

  • Aronson AS, Bergeron V, Fagan ME, Radke CJ (1994) The Influence of Disjoining Pressure on Foam Stability and Flow in Porous-Media. Colloids Surfaces a-Physicochemical Engineering Aspects 83:109–120

    Article  Google Scholar 

  • Assink RA, Caprihan A, Fukushima E (1988) Density profiles of a draining foam by nuclear magnetic resonance imaging. AIChE J 34:2077–2079

    Article  Google Scholar 

  • Attard P, Mitchell DJ, Ninham BW (1988a) Beyond Poisson-Boltzmann: images and correlations in the electric double layer. I. Counterions only. J Chem Phys 88:4987–4996

    Article  Google Scholar 

  • Attard P, Mitchell DJ, Ninham BW (1988b) Beyond Poisson-Boltzmann: images and correlations in the electric double layer. II. Symmetric electrolyte. J Chem Phys 89:4358–4367

    Article  Google Scholar 

  • Aveyard R, Clint JH (1995) Liquid droplets and solid particles at surfactant solution interfaces. J Chem Soc-Farad Trans 91:2681–2697

    Article  Google Scholar 

  • Aveyard R, Cooper P, Fletcher PDI, Rutherford CE (1993) Foam breakdown by hydrophobic particles and nonpolar oil. Langmuir 9:604–613

    Article  Google Scholar 

  • Basheva ES, Ganchev D, Denkov ND, Kasuga K, Satoh N, Tsujii K (2000) Role of betaine as foam booster in the presence of silicone oil drops. Langmuir 16:1000–1013

    Article  Google Scholar 

  • Bergeron V (1999) Measurement of forces and structure between fluid interfaces. Curr Opin Colloid Interface Sci 4:249–255

    Article  Google Scholar 

  • Bergeron V, Radke CJ (1992) Equilibrium measurements of oscillatory disjoining pressures in aqueous foam films. Langmuir 8:3020–3026

    Article  Google Scholar 

  • Bergeron V, Radke CJ (1995) Disjoining Pressure and Stratification in Asymmetric Thin-Liquid Films. Colloid Polym Sci 273:165–174

    Article  Google Scholar 

  • Bergeron V, Fagan ME, Radke CJ (1993) Generalized Entering Coefficients—a Criterion for Foam Stability against Oil in Porous-Media. Langmuir 9:1704–1713

    Article  Google Scholar 

  • Bianco H, Marmur A (1993) Gibbs Elasticity of a Soap Bubble. J Coll Interface Sci 158:295–302

    Article  Google Scholar 

  • Bickerman J (1973) Foams. Springer-Verlag, New York

    Book  Google Scholar 

  • Bikerman JJ (1938) The unit of foaminess. Trans Faraday Soc 34:0634–0638

    Article  Google Scholar 

  • Blank M, Lucassen J, van den Tempel M (1970) The elasticities of spread monolayers of bovine serum albumin and of ovalbumin. J Coll Int Sci 33:94–100

    Article  Google Scholar 

  • Brunner JR (1950) The Effectiveness of Some Antifoaming Agents in the Condensing of Skimmed Milk and Whey. J Dairy Sci 33:406–407

    Google Scholar 

  • Bryant GM, Walter AT (1983). In: Lewin M, Sello S (eds) Handbook of Fiber Science and Technology. Marcel Dekker, New York

    Google Scholar 

  • Carey E, Stubenrauch C (2010) Foaming properties of mixtures of a non-ionic (C(12)DMPO) and an ionic surfactant (C(12)TAB). J Colloid Interface Sci 346:414–423

    Article  Google Scholar 

  • Cervantes-Martinez A, Saint-Jalmes A, Maldonado A, Langevin D (2005) Effect of cosurfactant on the free-drainage regime of aqueous foams. J Colloid Interface Sci 292:544–547

    Article  Google Scholar 

  • Christenson HK, Claesson PM, Pashley RM (1987) The hydrophobic interaction between macroscopic surfaces. Proc Indian Acad Sci (Chem Sci) 98:379–389

    Google Scholar 

  • Christenson HK, Fang J, Ninham BW, Parker JL (1990) Effect of divalent electrolyte on the hydrophobic attraction. J Phys Chem 94:8004–8006

    Article  Google Scholar 

  • Datymer A (1983) Surfactants in Textile Processing. Marcel Dekker, New York

    Google Scholar 

  • Davidson JA (1981) Foam Stability as an Historic Measure of the Alcohol Concentration in Distilled Alcoholic Beverages. J Colloid Interface Sci 81:540–542

    Article  Google Scholar 

  • De Gennes PG (1985) Penetration of a coil into an adsorbed layer—application to the kinetics of exchange and to bridging processes between colloidal particles. Cr Acad Sci II 301:1399–1403

    Google Scholar 

  • De Gennes PG (1987) Polymers at an interface; a simplified view. Adv Colloid Interface Sci 27:189–209

    Article  Google Scholar 

  • de Gennes P-G (1997) Friction forces on a solid experiencing more than one contact. C R Acad Sci, Ser IIb: Mec, Phys, Chim, Astron 325:7–14

    Google Scholar 

  • de Gennes PG (2001) “Young” soap films. Langmuir 17:2416–2419

    Article  Google Scholar 

  • Denkov ND (1999) Mechanisms of action of mixed solid-liquid antifoams. 2. Stability of oil bridges in foam films. Langmuir 15:8530–8542

    Article  Google Scholar 

  • Denkov ND (2004) Mechanisms of foam destruction by oil-based antifoams. Langmuir 20:9463–9505

    Article  Google Scholar 

  • Denkov N, Cooper P, Martin J (1999) Mechanisms of action of mixed solid-liquid antifoams. 1. Dynamics of foam film rupture Langmuir 15:8514–8529

    Google Scholar 

  • Denkov ND, Marinova KG, Christova C, Hadjiiski A, Cooper P (2000) Mechanisms of action of mixed solid-liquid antifoams: Exhaustion and reactivation. Langmuir 16:2515–2528

    Article  Google Scholar 

  • Denkov ND, Tcholakova S, Marinova KG, Hadjiiski A (2002) Role of oil spreading for the efficiency of mixed oil-solid antifoams. Langmuir 18:5810–5817

    Article  Google Scholar 

  • Derjaguin B, Kussakov M (1939) Anomalous Properties of Thin Polymolecular Films. V. Acta Physicochemca URSS 10:25–44

  • Derjaguin B, Landau L (1941) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Phys-chim 14:633–662

  • Derjaguin B, Obuchov E (1935) Kolloidn Zh 1:385

  • Derjaguin B, Obuchov E (1936) Anomalien dünner Flüssigkeitsschichten. Acta Physic URSS 5:1–22

  • Derjaguin BV, Titievskaya AS (1953) Kolloid Zh 15:416

  • Deryagin BV (1989) Influence of surface forces on the formation of structural peculiarities of the boundary layers of liquids and boundary phases. Pure Appl Chem 61:1955–1958

    Google Scholar 

  • Deryagin BV, Titievskava AS (1957) Static and kinetic stability of free films and froths. Proc Intern Congr Surface Activity, 2nd, London, 1957 1:211–219

    Google Scholar 

  • Deryaguin BV (1989) Theory of the stability of colloids and thin films. Springer, New York

    Google Scholar 

  • Desai D, Kumar R (1982) Flow through a Plateau border of cellular foam. Chem Eng Sci 37:1361–1370

    Article  Google Scholar 

  • Desai D, Kumar R (1983) Liquid holdup in semibatch cellular foams. Chem Eng Sci 38:1525–1534

    Article  Google Scholar 

  • Dippenaar A (1982a) The destabilization of froth by solids. II. The rate-determining step. Int J Miner Process 9:15–22

    Article  Google Scholar 

  • Dippenaar A (1982b) The Destabilization of Froth by Solids 0.1. the Mechanism of Film Rupture. Int J Miner Process 9:1–14

    Article  Google Scholar 

  • Dippenaar A (1982c) The destabilization of froth by solids. I. The mechanism of film rupture. Int J Miner Process 9:1–14

    Article  Google Scholar 

  • Durand M, Langevin D (2002) Physicochemical approach to the theory of foam drainage. European Physical Journal E: Soft Matter 7:35–44

  • Durand M, Martinoty G, Langevin D (1999) Liquid flow through aqueous foams: From the plateau border-dominated regime to the node-dominated regime. Phys Rev E: Stat Phys, Plasmas, Fluids, Relat Interdiscip Top 60:R6307–R6308

  • Durian DJ, Raghavan SR (2010) Making a frothy shampoo or beer. Phys Today 63:62–63

    Article  Google Scholar 

  • Dzaloshinskii IE, Lifshitz EM, Pitaerskii LP (1961) The general theory of van der Waals forces. Adv Phys 10:165–209

  • Eddy CW (1932) An anti-foam stillhead. Ind Eng Chem Anal Ed 4:198–199

    Article  Google Scholar 

  • Ekserova D, Sheludko A (1971) Porous plate method for studying microscopic foam and emulsion films. Dokl Bolg Akad Nauk 24:47–50

  • Exerowa D, Kruglyakov PM (1997) Foam and foam films: theory, experiment, application. Marcel Dekker, New York

    Google Scholar 

  • Exerowa D, Kruglyakov PM (1998) Foam and foam films: Theory, experiment and application. Elsevier, Amsterdam

    Google Scholar 

  • Exerowa D, Kolarov T, Khristov K (1987) Direct Measurement of Disjoining Pressure in Black Foam Films. I. Films from an Ionic Surfactant”. Colloids Surf 22:171–185

  • Fameau AL, Saint-Jalmes A, Cousin F et al (2011) Smart foams: switching reversibly between ultrastable and unstable foams. Angew Chem Int Ed 50:8264–8269

    Article  Google Scholar 

  • Fanto RZ (1907) Angew Chem 20:1233–1234

    Article  Google Scholar 

  • Freger VB, Vetokhin VN (1992) Determination of the foam destruction rate - Rupture of films. Colloid J Russ Acad Sci 54:280–284

    Google Scholar 

  • Friedrichs F (1928) J Soc Glass Rech 12:306

    Google Scholar 

  • Frye GC, Berg JC (1989) Antifoam Action by Solid Particles. J Coll Int Sci 127:222–238

    Article  Google Scholar 

  • Garrett PR (1979) The effect of polytetrafluoroethylene particles on the foamability of aqueous surfactant solutions. J Colloid Interface Sci 69:107–121

    Article  Google Scholar 

  • Garrett PR (1980) Preliminary considerations concerning the stability of a liquid heterogeneity in a plane-parallel liquid-film. J Coll Int Sci 76:587–590

    Article  Google Scholar 

  • Garrett PR (1992) The mode of action of antifoams. In: Garrett PR (ed) Defoaming: theory and industrial applications. CRC Press, Boca Raton, pp 329

    Google Scholar 

  • Gastrock EA, Reid JD (1938) Antifoaming device for use in concentration of noninflammable liquors. Ind Eng Chem-Anal Ed 10:0440–0440

  • German, Government (1981) Deutsche Industrie Norm (DIN)

  • Gibbs JW (1928) The Collected Works of J. Willard Gibbs, Ph.D., L.L.D. Longmans, Green and Co., New York, London, Toronto

    Google Scholar 

  • Goldfarb II, Sheiber IR (1988) Liquid flow in foams. Fluid Dyn (Trans USSR Acad Sci Mech Liquid Gas Ser) 23:244

  • Gunderson LO, Denman WL (1948) Polyamide foam inhibitors—mechanism of foam inhibition in steam generators. Ind Eng Chem 40:1363–1370

  • Hadjiiski A, Dimova R, Denkov ND, Ivanov IB, Borwankar R (1996) Film trapping technique - Precise method for three-phase contact angle determination of solid and fluid particles of micrometer size. Langmuir 12:6665–6675

    Article  Google Scholar 

  • Hadjiiski A, Tcholakova S, Denkov ND, Durbut P, Broze G, Mehreteab A (2001) Effect of oily additives on foamability and foam stability. 2. Entry barriers. Langmuir 17:7011–7021

    Google Scholar 

  • Hamaker HC (1937) The London-van der Waals attraction between spherical particles. Physica 4:1058–1072

    Article  Google Scholar 

  • Harkins WD (1941) A general thermodynamic theory of the spreading of liquids to form duplex films and of liquids or solids to form monolayers. J Phys Chem 9:552–568

    Article  Google Scholar 

  • Hobbs SY, Pratt CF (1974) Modifications in bubbly flow on antifoam addition. Aiche J 20:178–180

  • Hunter RJ (1994) Introduction to modern colloid science. Oxford University Press, Oxford

  • Hutzler S, Cox SJ, Wang G (2005) Foam drainage in two dimensions. Coll Surf A 263:178–183

    Article  Google Scholar 

  • Israelachvili J (1992a) Interfacial forces. J Vac Sci Technol, A 10:2961–2971

  • Israelachvili JN (1992b) Adhesion, friction and lubrication of molecularly smooth surfaces. NATO ASI Ser, Ser E 220:351–385

  • Israelachvili JN (1992c) Intermolecular and surface forces. Academic Press, London

    Google Scholar 

  • Ivanov IBE (1988) Thin liquid films. Marcel Dekker, New York

    Google Scholar 

  • Ivanov IB, Dimitrov DS (1974) Hydrodynamics of thin liquid films. Effect of surface viscosity on thinning and rupture of foam films. Colloid Polym Sci 252:982–990

    Article  Google Scholar 

  • Ivanov IB, Slavchov RI, Basheva ES, Sidzhakova D, Karakashev SI (2011) Hofmeister effect on micellization, thin films and emulsion stability. Adv Colloid Interface Sci 168:93–104

    Article  Google Scholar 

  • Jacoby AL, Bischmann LC (1948) Steam bubble formation—effects of heating surface and use of antifoams. Ind Eng Chem 40:1360–1363

  • Japanese, Government (1967) Japan Industrial Standard (JIS)-K2518

  • Jha BK, Christiano SP, Shah DO (2000) Silicone antifoam performance: correlation with spreading and surfactant monolayer packing. Langmuir 16:9947–9954

    Article  Google Scholar 

  • Johansson G, Pugh RJ (1992) The influence of particle size and hydrophobicity on the stability of mineralized froths. Int J Miner Process 34:1–21

    Article  Google Scholar 

  • Joshi KS, Baumann A, Jeelani SAK, Blickenstorfer C, Naegeli I, Windhab EJ (2009) Mechanism of bubble coalescence induced by surfactant covered antifoam particles. J Colloid Interface Sci 339:446–453

    Article  Google Scholar 

  • Jun S, Pelot DD, Yarin AL (2012) Foam Consolidation and Drainage. Langmuir 28:5323–5330

    Article  Google Scholar 

  • Kann KB (1989) Kapillyarnaya gidrodinamika pen. Nauka, Novosibirsk

    Google Scholar 

  • Karakashev SI, Grozdanova MV (2012) Foams and antifoams. Adv Colloid Interface Sci 176:1–17

    Article  Google Scholar 

  • Karakashev SI, Ivanova DS (2010) Thin liquid film drainage: Ionic vs. non-ionic surfactants. J Colloid Interface Sci 343:584–593

    Article  Google Scholar 

  • Karakashev SI, Manev ED (2001) Frothing behavior of nonionic surfactant solutions in the presence of organic and inorganic electrolytes. J Colloid Interface Sci 235:194–196

    Article  Google Scholar 

  • Karakashev SI, Manev ED (2003) Correlation in the properties of aqueous single films and foam containing a nonionic surfactant and organic/inorganic electrolytes. J Colloid Interface Sci 259:171–179

    Article  Google Scholar 

  • Karakashev SI, Manev ED (2015) Hydrodynamics of thin liquid films: Retrospective and perspectives. Adv Colloid Interface Sci 222:398–412

    Article  Google Scholar 

  • Karakashev SI, Nguyen AV (2007) Effect of sodium dodecyl sulphate and dodecanol mixtures on foam film drainage: examining influence of surface rheology and intermolecular forces. Coll Surf A 293:229–240

    Article  Google Scholar 

  • Karakashev SI, Tsekov R (2011) Electro-marangoni effect in thin liquid films. Langmuir 27:265–270

    Article  Google Scholar 

  • Karakashev SI, Nguyen AV, Manev ED, Phan CM (2005) Surface foam film waves studied with high-speed linescan camera. Colloids Surf A 262:23–32

    Article  Google Scholar 

  • Karakashev SI, Nguyen AV, Manev ED (2007) A novel technique for improving interferometric determination of emulsion film thickness by digital filtration. J Colloid Interface Sci 306:449–453

    Article  Google Scholar 

  • Karakashev SI, Tsekov R, Ivanova DS (2010a) Dynamic effects in thin liquid films containing ionic surfactants. Colloids Surf A 356:40–45

    Article  Google Scholar 

  • Karakashev SI, Tsekov R, Manev ED, Nguyen AV (2010b) Elasticity of foam bubbles measured by profile analysis tensiometry. Coll Surf A 369:136–140

    Article  Google Scholar 

  • Karakashev SI, Manev ED, Nguyen AV (2011) Effect of thin film elasticity on foam stability. Annu Sofia Univ 102/103:153–163

  • Karakashev SI, Georgiev P, Balashev K (2012) Foam production—ratio between foaminess and rate of foam decay. J Colloid Interface Sci 379:144–147

    Article  Google Scholar 

  • Karakashev SI, Nguyen AV, Tsekov R (2013a) Effect of the adsorption component of the disjoining pressure on foam film drainage. Colloid J 75:176–180

    Article  Google Scholar 

  • Karakashev SI, Stöckelhuber KW, Tsekov R, Heinrich G (2013b) Bubble Rubbing on Solid Surface: Experimental Study. J Colloid Interface Sci 412:89–94

    Article  Google Scholar 

  • Kitchener JA (1962a) Confirmation of the Gibbs theory of elasticity of soap films. Nature 194:676–677

    Article  Google Scholar 

  • Kitchener JA (1962b) Elasticity of soap films; an amendment. Nature 195:1094

    Article  Google Scholar 

  • Koczo K, Racz G (1987) Flow in a plateau border. Coll Surf 22:97–110

  • Koczo K, Koczone JK, Wasan DT (1994) Mechanisms of antifoaming action in aqueous systems by hydrophobic particles and insoluble liquids. J Colloid Interface Sci 166:225–238

    Article  Google Scholar 

  • Koehler SA, Hilgenfeldt S, Stone HA (2000) A generalized view of foam drainage: experiment and theory. Langmuir 16:6327–6341

    Article  Google Scholar 

  • Koehler SA, Hilgenfeldt S, Stone HA (2001) Flow along two dimensions of liquid pulses in foams: experiment and theory. Europhys Lett 54:335–341

    Article  Google Scholar 

  • Koehler SA, Hilgenfeldt S, Stone HA (2004a) Foam drainage on the microscale I. Modeling flow through single Plateau borders. J Colloid Interface Sci 267:420–438

    Article  Google Scholar 

  • Koehler SA, Hilgenfeldt S, Stone HA (2004b) Foam drainage on the microscale II. Imaging flow through single Plateau borders. J Colloid Interface Sci 267:439–440

    Article  Google Scholar 

  • Koehler SA, Hilgenfeldt S, Weeks ER, Stone HA (2004c) Foam drainage on the microscale—II. Imaging flow through single Plateau borders. J Colloid Interface Sci 276:439–449

    Article  Google Scholar 

  • Koffler H, Goldschmidt MC (1949) The effect of certain antifoam agents on penicillin yields obtained during the submerged growth of Penicillium–Chrysogenum Q-176. Am J Bot 36:811–811

    Google Scholar 

  • Kolarov T, Ekserova D, Balinov B, Martynov GA (1986) Dependence of the charge and potential of a foam film on its thickness. Kolloidn Zh 48:1076–1080

  • Kovalchuk VI, Makievski AV, Kragel J et al (2005) Film tension and dilational film rheology of a single foam bubble. Coll Surf A 261:115–121

    Article  Google Scholar 

  • Kralchevsky PA, Danov KD (2015) Chemical Physics of Colloid Systems and Interfaces. In: Birdi KS (ed) Handbook of Surface and Colloid Chemistry. 4 edn. CRC Press, Boca Raton

    Google Scholar 

  • Krotov VV (1980) Theory of syneresis of foams and concentrated emulsions. 2. Local hydroconductivity of polyhedral disperse systems. Kolloidnyi Zhurnal 42:1092–1101

  • Krotov VV (1984) Generalized equations of syneresis. Kolloidnyi Zhurnal 46:15–22

  • Kruglyakov PM, Exerowa DR (1990) Pena i pennye plenki. Chemie, Moscow

  • Kruglyakov PM, Ekserova DR (1998) Foam and foam films. Elsevier, Amsterdam

    Google Scholar 

  • Kruglyakov PM, Koretskaya TA (1974) Inversion of Antifoaming Ability in Fatty Alcohol Series. Colloid J Ussr 36:627–630

    Google Scholar 

  • Kruglyakov PM, Vilkova NG (2007) Investigation of Plateau border profile shape with flow of surfactant solution through under constant pressure drop using the FPDT method. In: Tadros T (ed) Colloid Stability: The role of surface forces. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, pp. 109

  • Kruglyakov PM, Karakashev SI, Nguyen AV, Vilkova NG (2008) Foam drainage. Curr Opin Colloid Interface Sci 13:163–170

  • Kruglyakov PM, Elaneva SI, Vilkova NG (2011) About mechanism of foam stabilization by solid particles. Adv Colloid Interface Sci 165:108–116

    Article  Google Scholar 

  • Krustev R, Muller HJ (1999) Effect of film free energy on the gas permeability of foam films. Langmuir 15:2134–2141

    Article  Google Scholar 

  • Kulkarni RD, Goddard ED (1977) Droplet-foam bubble interactions as applied to antifoaming. Croat Chem Acta 50:163–179

    Google Scholar 

  • Kulkarni RD, Goddard ED, Kanner B (1977) Mechanism of antifoaming action. J Colloid Interface Sci 59:468–476

    Article  Google Scholar 

  • Kumagai H, Torikata Y, Yoshimura H, Kato M, Yano T (1991) Estimation of the stability of foam containing hydrophobic particles by parameters in the capillary model. Agric Biol Chem 55:1823–1829

    Google Scholar 

  • Kuznetsova LL, Kruglyakov PM (1981) Issledovanie zakonomernostey techeniya rastvorov PAV po kanalam PlatoGibbsa peny.. Dokl Akad Nauk SSSR 260:928

  • Leonard RA (1964) A theoretical and experimental study of intertitial liquid flow in foam Chemical Engineering. University of Cincinnati, Cincinnati, pp. 248

  • Leonard RA, Lemlich R (1965a) A study of interstial liquid flow in foam. Part I. Theoretical model and application to foam fractionation. AlChE J 11:18–25

    Article  Google Scholar 

  • Leonard RA, Lemlich R (1965b) A study of interstial liquid flow in foam. Part II. Experimental verification and observations. AlChE J 11:214–216

    Google Scholar 

  • Li XL, Shaw R, Stevenson P (2010) Effect of humidity on dynamic foam stability. Int J Miner Process 94:14–19

    Article  Google Scholar 

  • Li X, Karakashev SI, Evans GM, Stevenson P (2012) Effect of environmental humidity on static foam stability. Langmuir 28:4060–4068

    Article  Google Scholar 

  • Lifshitz EM (1955) The theory of molecular attractive forces between solid bodies. J Exp Theor Phys USSR 29:83–94

    Google Scholar 

  • Lucassen J, Van Den Tempel M (1972) Dynamic measurements of dilational properties of a liquid interface. Chem Eng Sci 27:1283–1291

    Article  Google Scholar 

  • Luisada AA (1950) Therapy of paroxysmal pulmonary edema by antifoaming agents. Circulation 2:872–879

    Article  Google Scholar 

  • Magrabi SA, Dlugogorski BZ, Jameson GJ (2001) Free drainage in aqueous foams: model and experimental study. AIChE J 47:314–327

    Article  Google Scholar 

  • Mahanty JH, Ninham BW (1977) Colloid Science: Dispersion Forces. Academic Press, London

    Google Scholar 

  • Manev E (1981) Study of thickness nonhomogeneity and rate of thinning of free microscopic liquid films. Godishnik na Sofiiskiya Universitet Sv Kliment Okhridski, Khimicheski Fakultet 75:174–183

  • Manev E, Karakashev S (2001) Effect of adsorption of short-chained organic ions on the stability of foam from aqueous solution of a non-ionic surfactant. Godishnik na Sofiiskiya Universitet "Sv Kliment Okhridski", Khimicheski Fakultet 92–94:167–173

    Google Scholar 

  • Manev ED, Nguyen AV (2005) Effects of surfactant adsorption and surface forces on thinning and rupture of foam liquid films. Int J Miner Process 77:1–45

    Article  Google Scholar 

  • Manev ED, Sazdanova SV, Wasan DT (1984) Emulsion and foam stability—the effect of film size on film drainage. J Colloid Interface Sci 97:591–594

    Article  Google Scholar 

  • Manev E, Tsekov R, Radoev B (1997) Effect of thickness non-homogeneity on the kinetic behavior of microscopic foam films. J Dispers Sci Technol 18:769–788

    Article  Google Scholar 

  • Manev ED, Karakashev SI, Milushev AM (2001) Influence of some organic and inorganic additivities on the stability of foams of tetraethilelene glycol mono octyl ether. Bulg Chem Comm 33(2):133–147

    Google Scholar 

  • Marinova K, Denkov N (2001) Foam destruction by mixed solid-liquid antifoams in solutions of alkyl glucoside: electrostatic interactions and dynamic effects. Langmuir 17:2426–2436

    Article  Google Scholar 

  • Marinova KG, Denkov ND, Branlard P, Giraud Y, Deruelle M (2002) Optimal hydrophobicity of silica in mixed oil-silica antifoams. Langmuir 18:3399–3403

    Article  Google Scholar 

  • McCarthy MJ (1990) Interpretation of the magnetic resonance imaging signal from a foam. AIChE J 36:287–290

    Article  Google Scholar 

  • Middelberg APJ, Dimitrijev-Dwyer M (2011) A designed biosurfactant protein for switchable foam control. Chemphyschem 12:1426–1429

    Article  Google Scholar 

  • Miller RW (1930) Can Chem Met 14:19–21

    Google Scholar 

  • Miller CA (2008) Antifoaming in aqueous foams. Curr Opin Colloid Interface Sci 13:177–182

    Article  Google Scholar 

  • Morokuma T, Utaka Y, Shoji M (2015) Measurement of liquid film thickness between coalescing twin air bubbles in a water pool using a modified laser extinction method. Heat Transfer Eng 36:1266–1274

  • Mysels KJ, Jones MN (1966) Direct measurement of variation of double-layer repulsion with distance. Discuss Faraday Soc 42:42–50

    Article  Google Scholar 

  • Mysels KJ, Shinoda K, Frankel S (1959) Soap films studies of their thinning and bibliography. Pergamon Press, London

    Google Scholar 

  • Mysels KJ, Cox MC, Skewis JD (1961a) Measurement of film elasticity. J Appl Phys 65:1107

  • Mysels KJ, Cox MC, Skewis JD (1961b) The measurement of film elasticity. J Phys Chem 65:1107

    Article  Google Scholar 

  • Narsimhan G (1990) Unsteady state drainage of a standing foam. AIChE Symp Ser 86:76–86

  • Neethling SJ, Lee HT, Cilliers JJ (2002) A foam drainage equation generalized for all liquid contents. J Phys Condens Matter 14:331–342

    Article  Google Scholar 

  • Nemeth Z, Racz G, Koczo K (1997) Antifoaming action of polyoxyethylene-polyoxypropylene-polyoxyethylene-type triblock copolymers on BSA foams. Coll Surf A 127:151–162

    Article  Google Scholar 

  • Nguyen AV (2002) Liquid drainage in single Plateau borders of foam. J Colloid Interface Sci 249:194–199

    Article  Google Scholar 

  • Nguyen AV, Schulze HJ (2003) Colloidal Science of Flotation. Marcel Dekker, New York

    Google Scholar 

  • Nguyen AV, Schulze HJ (2004) Colloidal science of flotation. Marcel Dekker, New York

    Google Scholar 

  • Nguyen AV, Evans GM, Jameson GJ (2002) Approximate calculations of electrical double-layer interaction between spheres. In: Hubbard AT (ed) Encyclopedia of surface and colloid science. Marcel Dekker, New York

    Google Scholar 

  • Nguyen AV, Harvey PA, Jameson GJ (2003) Influence of gas flow rate and frothers on water recovery in a froth column. Miner Eng 16:1143–1147

    Article  Google Scholar 

  • Nikolov A, Wasan DT, Denkov N, Kralchevskii P, Ivanov I (1990) Drainage of foam films in the presence of nonionic micelles. Prog. Colloid Polym Sci 82:87–98

    Article  Google Scholar 

  • Nushtaeva AV, Kruglyakov PM (2003) Capillary Pressure in Thinning Emulsion Film Stabilized with Solid Spherical Particles. Colloid J (Translation of Kolloidnyi Zhurnal) 65:341–349

    Article  Google Scholar 

  • Nushtayeva AV, Kruglyakov PM (2001) Capillary pressure in a thinning emulsion film stabilised by spherical solid particles. Mendeleev Commun 6:235–237

    Article  Google Scholar 

  • Oh SG, Shah DO (1991) Relationship between micellar lifetime and foamability of sodium dodecyl-sulfate and sodium dodecyl-sulfate 1-hexanol mixtures. Langmuir 7:1316–1318

    Article  Google Scholar 

  • Okazaki S, Sasaki T (1960) 2 Types of antifoamers and their cooperating action. Bull Chem Soc Jap 33:564–565

  • Okazaki S, Sasaki S (1966) Tenside 3

  • Owen MJ, Groh JL (1990) Fluorosilicone antifoams. J Appl Pol Sci 40:789–797

    Article  Google Scholar 

  • Pandey S, Bagwe RP, Shah DO (2003) Effect of counterions on surface and foaming properties of dodecyl sulfate. J Colloid Interface Sci 267:160–166

    Article  Google Scholar 

  • Pitois O, Fritz C, Vignes-Adler M (2005) Liquid drainage through aqueous foam: study of the flow on the bubble scale. J Colloid Interface Sci 282:458–465

    Article  Google Scholar 

  • Platikanov D, Manev E (1964) Thin liquid films in another liquid: model of emulsion. Izvestiya na Instituta po Fizikokhimiya, Bulgarska Akademiya na Naukite 4:185–191

  • Prins A, van den Tempel M (1968) Composition and elasticity of thin liquid films. J Phys Chem 73:2828

    Article  Google Scholar 

  • Prins A, Vantriet K (1987) Proteins and surface effects in fermentation—foam, antifoam and mass-transfer. TIBTECH 5:296–301

  • Prins A, Arcuri C, van den Tempel M (1967) Elasticity of thin liquid films. J Colloid Interface Sci 24:84

    Article  Google Scholar 

  • Pugh RJ (1996) Foaming, foam films, antifoaming and defoaming. Adv Colloid Interface Sci 64:67–142

    Article  Google Scholar 

  • Pugh RJ (2002) Foams and foaming. Handb Appl Surf Colloid Chem 2:23–43

  • Qu X, Wang LG, Karakashev SI, Nguyen AV (2009) Anomalous thickness variation of the foam films stabilized by weak non-ionic surfactants. J Colloid Interface Sci 337:538–547

    Article  Google Scholar 

  • Rabinovich YI, Deryagin BV (1988) Interaction of hydrophobized filaments in aqueous electrolyte solutions. Colloids Surf 30:243–251

  • Racz G, Koczo K, Wasan DT (1996) Mechanisms of antifoam deactivation. J Colloid Interface Sci 181:124–135

    Article  Google Scholar 

  • Radoev BP, Manev ED, Ivanov IB (1968) Flow of thin liquid films. I. Diffusion kinetics. Annu Sofia Univ 60:59–72

  • Radoev BP, Dimitrov DS, Ivanov IB (1974) Hydrocynamics of thin liquid films. Effect of the surfactant on the rate of thinning. Colloid Polym Sci 252:50–55

    Article  Google Scholar 

  • Razouk RI, Mysels KJ (1966) Progress in measurement of film elasticity. J Am Oil Chem Soc 43:A130

  • Robinson JV, Woods WW (1948) A method of selecting foam inhibitors. J Soc Chem Ind-London 67:361–365

    Article  Google Scholar 

  • Rosen MJ, Solash J (1969) Factors affecting initial foam height in the Ross–Miles foam test. J Am Oil Chem Soc 46:399–402

    Article  Google Scholar 

  • Ross S (1950) The inhibition of foaming. II. A mechanism for the rupture of liquid films by anti-foaming agents. J Phys Chem 54:429–436

    Article  Google Scholar 

  • Ross S (1967) Mechanisms of foam stabilization and antifoaming action. Chem Eng Prog 63:41–47

    Google Scholar 

  • Ross S, Butler JN (1956) The inhibition of foaming 0.7. Effects of antifoaming agents on surface-plastic solutions. J Phys Chem 60:1255–1258

    Article  Google Scholar 

  • Ross S, McBain JW (1944) Inhibition of foaming in solvents containing known foamers. Ind Eng Chem 36:570–573

  • Ross J, Miles GD (1941) An apparatus for comparison of foaming properties of soaps and detergents. Oil soap 18:99

    Article  Google Scholar 

  • Ross S, Young JG (1951) Action of Antifoaming Agents at Optimum Concentrations. Ind Eng Chem 43:2520–2525

  • Ross S, Hughes AF, Kennedy ML, Mardoian AR (1953) The inhibition of foaming. V. Synergistic effects of antifoaming agents. J Phys Chem 57:684–686

    Article  Google Scholar 

  • Saint-Jalmes A (2006) Physical chemistry in foam drainage and coarsening. Soft Matter 2:836–849

  • Saint-Jalmes A, Langevin D (2002) Time evolution of aqueous foams: drainage and coarsening. J Phys Condens Matter 14:9397

    Article  Google Scholar 

  • Saint-Jalmes A, Vera MU, Durian DJ (2000) Free drainage of aqueous foams: container shape effects on capillarity and vertical gradients. Europhys Lett 50:695–701

    Article  Google Scholar 

  • Saint-Jalmes A, Zhang Y, Langevin D (2004) Quantitative description of foam drainage: transition with surface mobility. Eur Phys J E 15:53

  • Samanta S, Ghosh P (2011) Coalescence of bubbles and stability of foams in brij surfactant systems. Ind Eng Chem Res 50:4484–4493

    Article  Google Scholar 

  • Saulnier L, Restagno F, Delacotte J, Langevin D, Rio E (2011) What is the mechanism of soap film entrainment? Langmuir 27:13406–13409

    Article  Google Scholar 

  • Schelero N, Hedicke G, Linse P, Klitzing RV (2010) Effects of counterions and co-ions on foam films stabilized by anionic dodecyl sulfate. J Phys Chem B 114:15523–15529

    Article  Google Scholar 

  • Scheludko A (1967) Thin liquid films. Adv Colloid Interface Sci 1:391–464

    Article  Google Scholar 

  • Scheludko A, Exerowa D (1959a) Electrostatic pressure in foam films of aqueous electrolyte solutions. Kolloid Z 165:148–151

  • Scheludko A, Exerowa D (1959b) Electrostatic repulsion between diffusion electrical layers in two-sided liquid films. Doklady Akademii Nauk SSSR 127:149–151

  • Scheludko A, Platikanov D (1961) Investigation of thin liquid layers on mercury. Kolloid-Z 175:150–158

  • Scheludko A, Dessimirov K, Nikolov A (1954/1955) On the drainage of aqueous solution from foam lamelas. Ann Sofia Univ 49:127–141

  • Sett S, Sinha-Ray S, Yarin AL (2013) Gravitational drainage of foam films. Langmuir 29:4934–4947

    Article  Google Scholar 

  • Sett S, Sahu RP, Pelot DD, Yarin AL (2014) Enhanced foamability of sodium dodecyl sulfate surfactant mixed with superspreader trisiloxane-(poly)ethoxylate. Langmuir 30:14765–14775

    Article  Google Scholar 

  • Sett S, Sahu RP, Sinha-Ray S, Yarin AL (2016) Experimental investigation of eletrokinetic stabilization of gravitational drainage of ionic surfactants films. Electrochim Acta 187:693–703

    Article  Google Scholar 

  • Slavchov RI, Karakashev SI, Ivanov IB (2014) Ionic Surfactants and Ion-Specific Effects: Adsorption, Micellization, Thin Liquid Films. In: Romsted LS (ed) Surfactant Science and Technology: Retrospects and Prospects. Taylor & Francis Group, pp. 593

  • Stein HN (1993) The drainage of free liquid-films. Coll Surf A 79:71–80

    Article  Google Scholar 

  • Stevenson P (2005) Remarks on the shear viscosity of surfaces stabilized with soluble surfactants. J Colloid Interf Sci 290:603

    Article  Google Scholar 

  • Stevenson P, Stevanov C, Jameson GJ (2003) Liquid overflow from a column of rising aqueous froth. Miner Eng 16:1045

  • Stevenson P, Mantle MD, Sederman AJ, Gladden LF (2007) Analitative Measurments of liquid Holdup and Drainage in foam using NMRI. AIChEJ 53:290

  • Stone HA, Koehler SA, Hilgenfeldt S, Durand M (2003) Perspectives on foam drainage and the influence of interfacial rhelogy. J Phys Conden Mat 15:S283–S290

    Article  Google Scholar 

  • Szekrenyesy T, Liktor K, Sandor N (1992) Characterization of foam stability by the use of foam models. 2. Results and discussion. Colloids Surf 68:275–282

    Article  Google Scholar 

  • Tamura T, Kageyama M, Kaneko Y, Kishino T, Nikaido M (1999) Direct observation of foam film rupture by several types of antifoams using a scanning laser microscope. J Colloid Interface Sci 213:179–186

    Article  Google Scholar 

  • Torikata Y, Kato M, Kumagai H, Yano T (1991) Estimation of foam stability by parameters in the capillary model. Agric Biol Chem 55:1307–1312

    Google Scholar 

  • Tsekov R, Schulze HJ (1997) Hydrophobic forces in thin liquid films: adsorption contribution. Langmuir 13:5674–5677

    Article  Google Scholar 

  • Tsuge H, Ushida J, Hibino SI (1984) Measurement of film-breaking ability of antifoaming agents. J Colloid Interface Sci 100:175–184

    Article  Google Scholar 

  • Valkovska DS, Danov KD, Ivanov IB (2000) Effect of surfactants on the stability of films between two colliding small bubbles. Colloids Surf A 175:179–192

    Article  Google Scholar 

  • Varadaraj R, Bock J, Valint P, Zushma S, Brons N (1990) Relationship between fundamental interfacial properties and foaming in linear and branched sulfate, ethoxysulfate, and ethoxylate surfactants. J Colloid Interface Sci 140:31–34

    Article  Google Scholar 

  • Varade D, Carriere D, Arriaga LR et al (2011) On the origin of the stability of foams made from catanionic surfactant mixtures. Soft Matter 7:6557–6570

    Article  Google Scholar 

  • Verbist G, Weaire D, Kraynik AM (1996) The foam drainage equation. J Phys: Condens Matter 8:3715–3731

    Google Scholar 

  • Verwey EJW, Overbeek JTG (1948) Theory of the stability of lyophobic colloids. Elsevier, Amsterdam

    Google Scholar 

  • Vilkova NG, Kruglyakov PM (2004a) Influence of a liquid flow through a foam under a pressure drop on the Plateau border curvature profile. Mendeleev Commun 14:22–23

    Article  Google Scholar 

  • Vilkova NG, Kruglyakov PM (2004b) Investigation of foam and emulsion destruction under the great pressure gradients. Adv Colloid Interface Sci 108–109:159–165

    Article  Google Scholar 

  • Vilkova NG, Kruglyakov PM (2005) Liquid flow through the foam: Comparison of experimental data with the theory. Colloids Surf A: Physicochem Eng Aspects 263:205–209

  • Walker HW, Morrow RW, du Pont de Nemours EI (1949). USA

  • Wang Z, Narsimhan G (2006) Model for Plateau border drainage of power-law fluid with mobile interface and its application to foam drainage. J Colloid Interf Sci 300:327

    Article  Google Scholar 

  • Wang G, Pelton R, Hrymak A, Shawafaty N, Heng YM (1999) On the role of hydrophobic particles and surfactants in defoaming. Langmuir 15:2202–2208

    Article  Google Scholar 

  • Wantke KD, Fruhner H (1998) The relationship between foam stability and surface rheological properties. Prog Trends Rheol V, Proc Eur Rheol Conf, 5th:315–316

  • Weaire D, Hutzler S (1999) Physics of foams. Oxford University Press, Oxford

  • Weaire D, Pittet N, Hutzler S, Pardal D (1993) Steady-state drainage of an aqueous foam. Phys Rev Lett 71:2670–2673

    Article  Google Scholar 

  • Wu F, Cai C, Wang L, Cao ZP, Yi WB (2008a) Breaking and inhibiting foam performance of modified silicone oils in oil-based systems. J DIsp Sci Tech 29:792–795

    Article  Google Scholar 

  • Wu F, Cai C, Yi WB, Cao ZP, Wang Y (2008b) Antifoaming performance of polysiloxanes modified with fluoroalkyls and polyethers. J App Polym Sci 109:1950–1954

    Article  Google Scholar 

Download references

Acknowledgements

Stoyan Karakashev thanks to the Fulbright organization for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stoyan I. Karakashev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karakashev, S.I. Hydrodynamics of foams. Exp Fluids 58, 91 (2017). https://doi.org/10.1007/s00348-017-2332-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-017-2332-z

Navigation