Skip to main content

Application of short-range dual-Doppler lidars to evaluate the coherence of turbulence

Abstract

Two synchronized continuous wave scanning lidars are used to study the coherence of the along-wind and across-wind velocity components. The goal is to evaluate the potential of the lidar technology for application in wind engineering. The wind lidars were installed on the Lysefjord Bridge during four days in May 2014 to monitor the wind field in the horizontal plane upstream of the bridge deck. Wind records obtained by five sonic anemometers mounted on the West side of the bridge are used as reference data. Single- and two-point statistics of wind turbulence are studied, with special emphasis on the root-coherence and the co-coherence of turbulence. A four-parameter decaying exponential function has been fitted to the measured co-coherence, and a good agreement is observed between data obtained by the sonic anemometers and the lidars. The root-coherence of turbulence is compared to theoretical models. The analytical predictions agree rather well with the measured coherence for the along-wind component. For increasing wavenumbers, larger discrepancies are, however, noticeable between the measured coherence and the theoretical predictions. The WindScanners are observed to slightly overestimate the integral length scales, which could not be explained by the laser beam averaging effect alone. On the other hand, the spatial averaging effect does not seem to have any significant effect on the coherence.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  • Angelou N, Mann J, Sjöholm M, Courtney M (2012) Direct measurement of the spectral transfer function of a laser based anemometer. Revi Sci Instrum 83(3):033111. doi:10.1063/1.3697728

    Article  Google Scholar 

  • Antonia RA, Luxton RE (1972) The response of a turbulent boundary layer to a step change in surface roughness. Part 2. Rough-to-smooth. J Fluid Mech 53:737–757. doi:10.1017/S002211207200045X

  • Aryan H, Boynton RJ, Walker SN (2013) Analysis of trends between solar wind velocity and energetic electron fluxes at geostationary orbit using the reverse arrangement test. J Geophys Res Space Phys 118(2):636–641. doi:10.1029/2012JA018216

    Article  Google Scholar 

  • Barkwith A, Collier CG (2011) Lidar observations of flow variability over complex terrain. Meteorol Appl 18(3):372–382. doi:10.1002/met.244

    Article  Google Scholar 

  • Beck TW, Housh TJ, Weir JP, Cramer JT, Vardaxis V, Johnson GO, Coburn JW, Malek MH, Mielke M (2006) An examination of the runs test, reverse arrangements test, and modified reverse arrangements test for assessing surface EMG signal stationarity. J Neurosci Methods 156(1):242–248. doi:10.1016/j.jneumeth.2006.03.011

    Article  Google Scholar 

  • Bendat J, Piersol A (2011) Random data: analysis and measurement procedures Wiley series in probability and statistics. Wiley, Hoboken

    MATH  Google Scholar 

  • Calhoun R, Heap R, Princevac M, Newsom R, Fernando H, Ligon D (2006) Virtual towers using coherent Doppler lidar during the Joint Urban 2003 dispersion experiment. J Appl Meteorol Climatol 45(8):1116–1126. doi:10.1175/JAM2391.1

    Article  Google Scholar 

  • Carter G, Knapp C, Nuttall AH (1973) Estimation of the magnitude-squared coherence function via overlapped fast Fourier transform processing. IEEE Trans Electroacoust Audio 21(4):337–344. doi:10.1109/TAU.1973.1162496

    Article  Google Scholar 

  • Chen J, Hui M, Xu Y (2007) A comparative study of stationary and non-stationary wind models using field measurements. Bound Layer Meteorol 122(1):105–121. doi:10.1007/s10546-006-9085-1

    Article  Google Scholar 

  • Cheynet E, Bogunović Jakobsen J, Snæbjörnsson J (2016) Buffeting response of a suspension bridge in complex terrain. Eng Struct 128:474–487. doi:10.1016/j.engstruct.2016.09.060

    Article  Google Scholar 

  • Cheynet E, Bogunović Jakobsen J, Svardal B, Reuder J, Kumer V (2016) Wind coherence measurement by a single pulsed Doppler wind lidar. Energy Proced 94:462–477. doi:10.1016/j.egypro.2016.09.217

    Article  Google Scholar 

  • Davenport AG (1961) The spectrum of horizontal gustiness near the ground in high winds. Q J R Meteorol Soc 87(372):194–211. doi:10.1002/qj.49708737208

    Article  Google Scholar 

  • Davenport AG (1962) The response of slender, line-like structures to a gusty wind. Proc Inst Civil Eng 23(3):389–408. doi:10.1680/iicep.1962.10876

    Google Scholar 

  • ESDU 86010 (2001) Characteristics of atmospheric turbulence near the ground part III: variations in space and time for strong winds (neutral atmosphere). ESDU International

  • Friedrich K, Lundquist JK, Aitken M, Kalina EA, Marshall RA (2012) Stability and turbulence in the atmospheric boundary layer: a comparison of remote sensing and tower observations. Geophys Res Lett 39. doi:10.1029/2011gl050413

  • Hjorth-Hansen E, Jakobsen A, Strømmen E (1992) Wind buffeting of a rectangular box girder bridge. J Wind Eng Ind Aerodyn 42:1215–1226. doi:10.1016/0167-6105(92)90128-w

  • Hui M, Larsen A, Xiang H (2009a) Wind turbulence characteristics study at the Stonecutters Bridge site: Part II: wind power spectra, integral length scales and coherences. J Wind Eng Ind Aerodyn 97(1):48–59. doi:10.1016/j.jweia.2008.11.003

    Article  Google Scholar 

  • Hui M, Larsen A, Xiang H (2009b) Wind turbulence characteristics study at the Stonecutters Bridge site: Part I:mean wind and turbulence intensities. J Wind Eng Ind Aerodyna 97(1):22–36. doi:10.1016/j.jweia.2008.11.002

    Article  Google Scholar 

  • Iungo GV, Wu YT, Porté-Agel F (2013) Field measurements of wind turbine wakes with lidars. J Atmos Ocean Technol 30(2):274–287. doi:10.1175/JTECH-D-12-00051.1

    Article  Google Scholar 

  • Jakobsen JB (1997) Span-wise structure of lift and overturning moment on a motionless bridge girder. J Wind Eng Ind Aerodyn 69:795–805. doi:10.1016/S0167-6105(97)00206-7

    Article  Google Scholar 

  • Kaimal JC, Wyngaard JC, Izumi Y, Cot OR (1972) Spectral characteristics of surface-layer turbulence. Q J R Meteorol Soc 98(417):563–589. doi:10.1002/qj.49709841707

    Article  Google Scholar 

  • Karlsson CJ, Olsson FÅ, Letalick D, Harris M (2000) All-fiber multifunction continuous-wave coherent laser radar at 1.55 \(\mu\)m for range, speed, vibration, and wind measurements. Appl Opt 39(21):3716–3726. doi:10.1364/AO.39.003716

    Article  Google Scholar 

  • von Kármán T (1948) Progress in the statistical theory of turbulence. Proc Natl Acad Sci 34(11):530–539

    MathSciNet  Article  MATH  Google Scholar 

  • Kristensen L, Jensen N (1979) Lateral coherence in isotropic turbulence and in the natural wind. Bound Layer Meteorol 17(3):353–373. doi:10.1007/BF00117924

    Article  Google Scholar 

  • Kristensen L, Kirkegaard P, Mann J, Mikkelsen T, Nielsen M, Sjöholm M (2010) Spectral coherence along a lidar-anemometer beam. Tech. rep., Danmarks Tekniske Universitet, Risø Nationallaboratoriet for Bæredygtig Energi

  • Kristensen L, Kirkegaard P, Mikkelsen T (2011) Determining the velocity fine structure by a laser anemometer with fixed orientation. DTU Wind Energy E, DTU-Wind-Energy-E-0008(EN)

  • Kumer VM, Reuder J, Svardal B, Stre C, Eecen P (2015) Characterisation of single wind turbine wakes with static and scanning WINTWEX-W lidar data. Energy Proced 80:245–254. doi:10.1016/j.egypro.2015.11.428 (12th Deep Sea Offshore Wind R&D Conference, EERA DeepWind’2015)

    Article  Google Scholar 

  • Lange J, Mann J, Angelou N, Berg J, Sjöholm M, Mikkelsen T (2015) Variations of the wake height over the Bolund escarpment measured by a scanning lidar. Boundary-Layer Meteorology 159(1):1–13. doi:10.1007/s10546-015-0107-8

  • Lenschow DH, Stankov BB (1986) Length Scales in the Convective Boundary Layer. J Atmos Sci 43:1198–1209. doi:10.1175/1520-0469(1986) 043<1198:LSITCB>2.0.CO;2

    Article  Google Scholar 

  • Lothon M, Lenschow D, Mayor S (2006) Coherence and scale of vertical velocity in the convective boundary layer from a Doppler lidar. Bound Layer Meteorol 121(3):521–536. doi:10.1007/s10546-006-9077-1

    Article  Google Scholar 

  • Luke YL (1962) Integrals of Bessel functions. McGraw-Hill, New York

    MATH  Google Scholar 

  • Mann J, Cariou JP, Courtney MS, Parmentier R, Mikkelsen T, Wagner R, Lindelöw P, Sjöholm M, Enevoldsen K (2009) Comparison of 3D turbulence measurements using three staring wind lidars and a sonic anemometer. Meteorol Z 18(2):135–140. doi:10.1127/0941-2948/2009/0370

    Article  Google Scholar 

  • Mann J, Peña A, Bingöl F, Wagner R, Courtney M (2010) Lidar scanning of momentum flux in and above the atmospheric surface layer. J Atmos Ocean Technol 27(6):959–976. doi:10.1175/2010JTECHA1389.1

    Article  Google Scholar 

  • Mikkelsen T (2009) On mean wind and turbulence profile measurements from ground-based wind lidars: limitations in time and space resolution with continuous wave and pulsed lidar systems. In European Wind Energy Conference and Exhibition 2009

  • Mikkelsen T, Courtney M, Antoniou I, Mann J (2008a) Wind scanner: A full-scale laser facility for wind and turbulence measurements around large wind turbines. In: European Wind Energy Conference and Exhibition 2008

  • Mikkelsen T, Mann J, Courtney M, Sjöholm M (2008b) Windscanner: 3-D wind and turbulence measurements from three steerable doppler lidars. IOP Conf Ser Earth Environ Sci 1:U148–U156. doi:10.1088/1755-1307/1/1/012018

    Article  Google Scholar 

  • Miyata T, Yamada H, Katsuchi H, Kitagawa M (2002) Full-scale measurement of Akashi-Kaikyo Bridge during typhoon. J Wind Eng Ind Aerodyn 90(12):1517–1527. doi:10.1016/S0167-6105(02)00267-2

    Article  Google Scholar 

  • Newsom R, Calhoun R, Ligon D, Allwine J (2008) Linearly organized turbulence structures observed over a suburban area by dual-Doppler lidar. Bound Layer Meteorol 127(1):111–130. doi:10.1007/s10546-007-9243-0

    Article  Google Scholar 

  • Newsom RK, Berg LK, Shaw WJ, Fischer ML (2015) Turbine-scale wind field measurements using dual-Doppler lidar. Wind Energy 18(2):219–235. doi:10.1002/we.1691

    Article  Google Scholar 

  • Panofsky HA, Singer IA (1965) Vertical structure of turbulence. Q J R Meteorol Soc 91:339–344. doi:10.1002/qj.49709138908

  • Peña A, Hasager CB, Gryning SE, Courtney M, Antoniou I, Mikkelsen T (2009) Offshore wind profiling using light detection and ranging measurements. Wind Energy 12(2):105–124. doi:10.1002/we.283

    Article  Google Scholar 

  • Reitebuch O (2012) Wind lidar for atmospheric research. In: Schumann U (ed) Research topics in aerospace. Springer, Berlin, pp 487–507. doi:10.1007/978-3-642-30183-4_30

    Google Scholar 

  • Ropelewski CF, Tennekes H, Panofsky H (1973) Horizontal coherence of wind fluctuations. Bound Layer Meteorol 5(3):353–363. doi:10.1007/BF00155243

    Article  Google Scholar 

  • Saranyasoontorn K, Manuel L, Veers PS (2004) A comparison of standard coherence models for inflow turbulence with estimates from field measurements. J Sol Energy Eng 126(4):1069–1082. doi:10.1115/1.1797978

    Article  Google Scholar 

  • Sathe A, Mann J (2013) A review of turbulence measurements using ground-based wind lidars. Atmos Measurement Tech 6(11):3147–3167. doi:10.5194/amt-6-3147-2013

    Article  Google Scholar 

  • Sathe A, Mann J, Gottschall J, Courtney M (2011) Can wind lidars measure turbulence? J Atmos Ocean Technol 28(7):853–868. doi:10.1175/JTECH-D-10-05004.1

    Article  Google Scholar 

  • Shiotani M, Iwatani Y (1971) Correlations of wind velocities in relation to the gust loadings. In: Proceedings of the 3rd International Conference on Wind Effects on Buildings and Structures, Tokyo, pp 57–67

  • Siegel S, Castellan N (1988) Nonparametric statistics for the behavioral sciences. McGraw-Hill international editions statistics series. McGraw-Hill, New York

    Google Scholar 

  • Simley E, Angelou N, Mikkelsen T, Sjöholm M, Mann J, Pao LY (2016) Characterization of wind velocities in the upstream induction zone of a wind turbine using scanning continuous-wave lidars. J Renew Sustain Energy 8(1):013301. doi:10.1063/1.4940025

    Article  Google Scholar 

  • Sjöholm M, Mikkelsen T, Mann J, Enevoldsen K, Courtney M (2008) Time series analysis of continuous-wave coherent Doppler lidar wind measurements. IOP Conf Ser Earth Environ Sci 1(1):012,051. doi:10.1088/1755-1315/1/1/012051

    Article  Google Scholar 

  • Sjöholm M, Mikkelsen T, Mann J, Enevoldsen K, Courtney M (2009) Spatial averaging-effects on turbulence measured by a continuous-wave coherent lidar. Meteorol Z 18(3):281–287. doi:10.1127/0941-2948/2009/0379

    Article  Google Scholar 

  • Sjöholm M, Angelou N, Hansen P, Hansen KH, Mikkelsen T, Haga S, Silgjerd JA, Starsmore N (2014) Two-dimensional rotorcraft downwash flow field measurements by lidar-based wind scanners with agile beam steering. J Atmos OceanTechnol 31(4):930–937. doi:10.1175/JTECH-D-13-00010.1

    Google Scholar 

  • Smalikho I (1995) On measurement of the dissipation rate of the turbulent energy with a CW Doppler lidar. Atmos Ocean Opt 8:788–793

    Google Scholar 

  • Solari G, Piccardo G (2001) Probabilistic 3-D turbulence modeling for gust buffeting of structures. Probab Eng Mech 16(1):73–86. doi:10.1016/S0266-8920(00)00010-2

    Article  Google Scholar 

  • Sonnenschein CM, Horrigan FA (1971) Signal-to-noise relationships for coaxial systems that heterodyne backscatter from the atmosphere. Appl Opt 10(7):1600–1604. doi:10.1364/AO.10.001600

    Article  Google Scholar 

  • Stawiarski C, Träumner K, Knigge C, Calhoun R (2013) Scopes and challenges of dual - Doppler lidar wind measurements - an error analysis. J Atmos Ocean Technol 30(9):2044–2062. doi:10.1175/JTECH-D-12-00244.1

    Article  Google Scholar 

  • Stawiarski C, Träumner K, Kottmeier C, Knigge C, Raasch S (2015) Assessment of surface-layer coherent structure detection in dual-Doppler lidar data based on virtual measurements. Bound Layer Meteorol 156(3):371–393. doi:10.1007/s10546-015-0039-3

    Article  Google Scholar 

  • Teunissen H (1980) Structure of mean winds and turbulence in the planetary boundary layer over rural terrain. Bound Layer Meteorol 19(2):187–221. doi:10.1007/BF00117220

    Article  Google Scholar 

  • Toriumi R, Katsuchi H, Furuya N (2000) A study on spatial correlation of natural wind. J Wind Eng Ind Aerodyn 87(23):203–216. doi:10.1016/S0167-6105(00)00037-4 (10th International Conference on Wind Engineering)

    Article  Google Scholar 

  • Vickery BJ (1970) On the reliability of gust loading factors. In Proceeding Technical Meeting Concerning Wind Loads on Buildings and Structures, Building Science Series, 30, pp 296–312

  • Wang H, Li A, Niu J, Zong Z, Li J (2013) Long-term monitoring of wind characteristics at Sutong Bridge site. J Wind Eng Ind Aerodyn 115:39–47. doi:10.1016/j.jweia.2013.01.006

    Article  Google Scholar 

  • Wang H, Wu T, Tao T, Li A, Kareem A (2016) Measurements and analysis of non-stationary wind characteristics at Sutong Bridge in Typhoon Damrey. J Wind Eng Ind Aerodyn 151:100–106. doi:10.1016/j.jweia.2016.02.001

    Article  Google Scholar 

  • Welch PD (1967) The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoust 15:70–73. doi:10.1109/TAU.1967.1161901

    MathSciNet  Article  Google Scholar 

  • Xu Y (2013) Wind effects on cable-supported bridges. Wiley, Hoboken

    Book  Google Scholar 

Download references

Acknowledgements

The study was initiated and performed with the support from the Norwegian Center for Offshore Wind Energy (NORCOWE, Project Number 193821 supported by the Research Council Norway). Support by the Norwegian Public Road Administration on the long-term wind and response monitoring of the Lysefjord bridge, as well as the assistance during the measurement campaign, is also acknowledged.  

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne Cheynet.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cheynet, E., Jakobsen, J.B., Snæbjörnsson, J. et al. Application of short-range dual-Doppler lidars to evaluate the coherence of turbulence. Exp Fluids 57, 184 (2016). https://doi.org/10.1007/s00348-016-2275-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-016-2275-9

Keywords

  • Wind Direction
  • Lidar
  • Wind Velocity
  • Wind Component
  • Bridge Deck