Experiments in Fluids

, 57:184 | Cite as

Application of short-range dual-Doppler lidars to evaluate the coherence of turbulence

  • Etienne Cheynet
  • Jasna Bogunović Jakobsen
  • Jónas Snæbjörnsson
  • Torben Mikkelsen
  • Mikael Sjöholm
  • Jakob Mann
  • Per Hansen
  • Nikolas Angelou
  • Benny Svardal
Research Article

Abstract

Two synchronized continuous wave scanning lidars are used to study the coherence of the along-wind and across-wind velocity components. The goal is to evaluate the potential of the lidar technology for application in wind engineering. The wind lidars were installed on the Lysefjord Bridge during four days in May 2014 to monitor the wind field in the horizontal plane upstream of the bridge deck. Wind records obtained by five sonic anemometers mounted on the West side of the bridge are used as reference data. Single- and two-point statistics of wind turbulence are studied, with special emphasis on the root-coherence and the co-coherence of turbulence. A four-parameter decaying exponential function has been fitted to the measured co-coherence, and a good agreement is observed between data obtained by the sonic anemometers and the lidars. The root-coherence of turbulence is compared to theoretical models. The analytical predictions agree rather well with the measured coherence for the along-wind component. For increasing wavenumbers, larger discrepancies are, however, noticeable between the measured coherence and the theoretical predictions. The WindScanners are observed to slightly overestimate the integral length scales, which could not be explained by the laser beam averaging effect alone. On the other hand, the spatial averaging effect does not seem to have any significant effect on the coherence.

References

  1. Angelou N, Mann J, Sjöholm M, Courtney M (2012) Direct measurement of the spectral transfer function of a laser based anemometer. Revi Sci Instrum 83(3):033111. doi:10.1063/1.3697728 CrossRefGoogle Scholar
  2. Antonia RA, Luxton RE (1972) The response of a turbulent boundary layer to a step change in surface roughness. Part 2. Rough-to-smooth. J Fluid Mech 53:737–757. doi:10.1017/S002211207200045X
  3. Aryan H, Boynton RJ, Walker SN (2013) Analysis of trends between solar wind velocity and energetic electron fluxes at geostationary orbit using the reverse arrangement test. J Geophys Res Space Phys 118(2):636–641. doi:10.1029/2012JA018216 CrossRefGoogle Scholar
  4. Barkwith A, Collier CG (2011) Lidar observations of flow variability over complex terrain. Meteorol Appl 18(3):372–382. doi:10.1002/met.244 CrossRefGoogle Scholar
  5. Beck TW, Housh TJ, Weir JP, Cramer JT, Vardaxis V, Johnson GO, Coburn JW, Malek MH, Mielke M (2006) An examination of the runs test, reverse arrangements test, and modified reverse arrangements test for assessing surface EMG signal stationarity. J Neurosci Methods 156(1):242–248. doi:10.1016/j.jneumeth.2006.03.011 CrossRefGoogle Scholar
  6. Bendat J, Piersol A (2011) Random data: analysis and measurement procedures Wiley series in probability and statistics. Wiley, HobokenMATHGoogle Scholar
  7. Calhoun R, Heap R, Princevac M, Newsom R, Fernando H, Ligon D (2006) Virtual towers using coherent Doppler lidar during the Joint Urban 2003 dispersion experiment. J Appl Meteorol Climatol 45(8):1116–1126. doi:10.1175/JAM2391.1 CrossRefGoogle Scholar
  8. Carter G, Knapp C, Nuttall AH (1973) Estimation of the magnitude-squared coherence function via overlapped fast Fourier transform processing. IEEE Trans Electroacoust Audio 21(4):337–344. doi:10.1109/TAU.1973.1162496 CrossRefGoogle Scholar
  9. Chen J, Hui M, Xu Y (2007) A comparative study of stationary and non-stationary wind models using field measurements. Bound Layer Meteorol 122(1):105–121. doi:10.1007/s10546-006-9085-1 CrossRefGoogle Scholar
  10. Cheynet E, Bogunović Jakobsen J, Snæbjörnsson J (2016) Buffeting response of a suspension bridge in complex terrain. Eng Struct 128:474–487. doi:10.1016/j.engstruct.2016.09.060 CrossRefGoogle Scholar
  11. Cheynet E, Bogunović Jakobsen J, Svardal B, Reuder J, Kumer V (2016) Wind coherence measurement by a single pulsed Doppler wind lidar. Energy Proced 94:462–477. doi:10.1016/j.egypro.2016.09.217 CrossRefGoogle Scholar
  12. Davenport AG (1961) The spectrum of horizontal gustiness near the ground in high winds. Q J R Meteorol Soc 87(372):194–211. doi:10.1002/qj.49708737208 CrossRefGoogle Scholar
  13. Davenport AG (1962) The response of slender, line-like structures to a gusty wind. Proc Inst Civil Eng 23(3):389–408. doi:10.1680/iicep.1962.10876 Google Scholar
  14. ESDU 86010 (2001) Characteristics of atmospheric turbulence near the ground part III: variations in space and time for strong winds (neutral atmosphere). ESDU InternationalGoogle Scholar
  15. Friedrich K, Lundquist JK, Aitken M, Kalina EA, Marshall RA (2012) Stability and turbulence in the atmospheric boundary layer: a comparison of remote sensing and tower observations. Geophys Res Lett 39. doi:10.1029/2011gl050413
  16. Hjorth-Hansen E, Jakobsen A, Strømmen E (1992) Wind buffeting of a rectangular box girder bridge. J Wind Eng Ind Aerodyn 42:1215–1226. doi:10.1016/0167-6105(92)90128-w
  17. Hui M, Larsen A, Xiang H (2009a) Wind turbulence characteristics study at the Stonecutters Bridge site: Part II: wind power spectra, integral length scales and coherences. J Wind Eng Ind Aerodyn 97(1):48–59. doi:10.1016/j.jweia.2008.11.003 CrossRefGoogle Scholar
  18. Hui M, Larsen A, Xiang H (2009b) Wind turbulence characteristics study at the Stonecutters Bridge site: Part I:mean wind and turbulence intensities. J Wind Eng Ind Aerodyna 97(1):22–36. doi:10.1016/j.jweia.2008.11.002 CrossRefGoogle Scholar
  19. Iungo GV, Wu YT, Porté-Agel F (2013) Field measurements of wind turbine wakes with lidars. J Atmos Ocean Technol 30(2):274–287. doi:10.1175/JTECH-D-12-00051.1 CrossRefGoogle Scholar
  20. Jakobsen JB (1997) Span-wise structure of lift and overturning moment on a motionless bridge girder. J Wind Eng Ind Aerodyn 69:795–805. doi:10.1016/S0167-6105(97)00206-7 CrossRefGoogle Scholar
  21. Kaimal JC, Wyngaard JC, Izumi Y, Cot OR (1972) Spectral characteristics of surface-layer turbulence. Q J R Meteorol Soc 98(417):563–589. doi:10.1002/qj.49709841707 CrossRefGoogle Scholar
  22. Karlsson CJ, Olsson FÅ, Letalick D, Harris M (2000) All-fiber multifunction continuous-wave coherent laser radar at 1.55 \(\mu\)m for range, speed, vibration, and wind measurements. Appl Opt 39(21):3716–3726. doi:10.1364/AO.39.003716 CrossRefGoogle Scholar
  23. von Kármán T (1948) Progress in the statistical theory of turbulence. Proc Natl Acad Sci 34(11):530–539MathSciNetCrossRefMATHGoogle Scholar
  24. Kristensen L, Jensen N (1979) Lateral coherence in isotropic turbulence and in the natural wind. Bound Layer Meteorol 17(3):353–373. doi:10.1007/BF00117924 CrossRefGoogle Scholar
  25. Kristensen L, Kirkegaard P, Mann J, Mikkelsen T, Nielsen M, Sjöholm M (2010) Spectral coherence along a lidar-anemometer beam. Tech. rep., Danmarks Tekniske Universitet, Risø Nationallaboratoriet for Bæredygtig EnergiGoogle Scholar
  26. Kristensen L, Kirkegaard P, Mikkelsen T (2011) Determining the velocity fine structure by a laser anemometer with fixed orientation. DTU Wind Energy E, DTU-Wind-Energy-E-0008(EN)Google Scholar
  27. Kumer VM, Reuder J, Svardal B, Stre C, Eecen P (2015) Characterisation of single wind turbine wakes with static and scanning WINTWEX-W lidar data. Energy Proced 80:245–254. doi:10.1016/j.egypro.2015.11.428 (12th Deep Sea Offshore Wind R&D Conference, EERA DeepWind’2015)CrossRefGoogle Scholar
  28. Lange J, Mann J, Angelou N, Berg J, Sjöholm M, Mikkelsen T (2015) Variations of the wake height over the Bolund escarpment measured by a scanning lidar. Boundary-Layer Meteorology 159(1):1–13. doi:10.1007/s10546-015-0107-8
  29. Lenschow DH, Stankov BB (1986) Length Scales in the Convective Boundary Layer. J Atmos Sci 43:1198–1209. doi:10.1175/1520-0469(1986) 043<1198:LSITCB>2.0.CO;2 CrossRefGoogle Scholar
  30. Lothon M, Lenschow D, Mayor S (2006) Coherence and scale of vertical velocity in the convective boundary layer from a Doppler lidar. Bound Layer Meteorol 121(3):521–536. doi:10.1007/s10546-006-9077-1 CrossRefGoogle Scholar
  31. Luke YL (1962) Integrals of Bessel functions. McGraw-Hill, New YorkMATHGoogle Scholar
  32. Mann J, Cariou JP, Courtney MS, Parmentier R, Mikkelsen T, Wagner R, Lindelöw P, Sjöholm M, Enevoldsen K (2009) Comparison of 3D turbulence measurements using three staring wind lidars and a sonic anemometer. Meteorol Z 18(2):135–140. doi:10.1127/0941-2948/2009/0370 CrossRefGoogle Scholar
  33. Mann J, Peña A, Bingöl F, Wagner R, Courtney M (2010) Lidar scanning of momentum flux in and above the atmospheric surface layer. J Atmos Ocean Technol 27(6):959–976. doi:10.1175/2010JTECHA1389.1 CrossRefGoogle Scholar
  34. Mikkelsen T (2009) On mean wind and turbulence profile measurements from ground-based wind lidars: limitations in time and space resolution with continuous wave and pulsed lidar systems. In European Wind Energy Conference and Exhibition 2009Google Scholar
  35. Mikkelsen T, Courtney M, Antoniou I, Mann J (2008a) Wind scanner: A full-scale laser facility for wind and turbulence measurements around large wind turbines. In: European Wind Energy Conference and Exhibition 2008Google Scholar
  36. Mikkelsen T, Mann J, Courtney M, Sjöholm M (2008b) Windscanner: 3-D wind and turbulence measurements from three steerable doppler lidars. IOP Conf Ser Earth Environ Sci 1:U148–U156. doi:10.1088/1755-1307/1/1/012018 CrossRefGoogle Scholar
  37. Miyata T, Yamada H, Katsuchi H, Kitagawa M (2002) Full-scale measurement of Akashi-Kaikyo Bridge during typhoon. J Wind Eng Ind Aerodyn 90(12):1517–1527. doi:10.1016/S0167-6105(02)00267-2 CrossRefGoogle Scholar
  38. Newsom R, Calhoun R, Ligon D, Allwine J (2008) Linearly organized turbulence structures observed over a suburban area by dual-Doppler lidar. Bound Layer Meteorol 127(1):111–130. doi:10.1007/s10546-007-9243-0 CrossRefGoogle Scholar
  39. Newsom RK, Berg LK, Shaw WJ, Fischer ML (2015) Turbine-scale wind field measurements using dual-Doppler lidar. Wind Energy 18(2):219–235. doi:10.1002/we.1691 CrossRefGoogle Scholar
  40. Panofsky HA, Singer IA (1965) Vertical structure of turbulence. Q J R Meteorol Soc 91:339–344. doi:10.1002/qj.49709138908
  41. Peña A, Hasager CB, Gryning SE, Courtney M, Antoniou I, Mikkelsen T (2009) Offshore wind profiling using light detection and ranging measurements. Wind Energy 12(2):105–124. doi:10.1002/we.283 CrossRefGoogle Scholar
  42. Reitebuch O (2012) Wind lidar for atmospheric research. In: Schumann U (ed) Research topics in aerospace. Springer, Berlin, pp 487–507. doi:10.1007/978-3-642-30183-4_30 Google Scholar
  43. Ropelewski CF, Tennekes H, Panofsky H (1973) Horizontal coherence of wind fluctuations. Bound Layer Meteorol 5(3):353–363. doi:10.1007/BF00155243 CrossRefGoogle Scholar
  44. Saranyasoontorn K, Manuel L, Veers PS (2004) A comparison of standard coherence models for inflow turbulence with estimates from field measurements. J Sol Energy Eng 126(4):1069–1082. doi:10.1115/1.1797978 CrossRefGoogle Scholar
  45. Sathe A, Mann J (2013) A review of turbulence measurements using ground-based wind lidars. Atmos Measurement Tech 6(11):3147–3167. doi:10.5194/amt-6-3147-2013 CrossRefGoogle Scholar
  46. Sathe A, Mann J, Gottschall J, Courtney M (2011) Can wind lidars measure turbulence? J Atmos Ocean Technol 28(7):853–868. doi:10.1175/JTECH-D-10-05004.1 CrossRefGoogle Scholar
  47. Shiotani M, Iwatani Y (1971) Correlations of wind velocities in relation to the gust loadings. In: Proceedings of the 3rd International Conference on Wind Effects on Buildings and Structures, Tokyo, pp 57–67Google Scholar
  48. Siegel S, Castellan N (1988) Nonparametric statistics for the behavioral sciences. McGraw-Hill international editions statistics series. McGraw-Hill, New YorkGoogle Scholar
  49. Simley E, Angelou N, Mikkelsen T, Sjöholm M, Mann J, Pao LY (2016) Characterization of wind velocities in the upstream induction zone of a wind turbine using scanning continuous-wave lidars. J Renew Sustain Energy 8(1):013301. doi:10.1063/1.4940025 CrossRefGoogle Scholar
  50. Sjöholm M, Mikkelsen T, Mann J, Enevoldsen K, Courtney M (2008) Time series analysis of continuous-wave coherent Doppler lidar wind measurements. IOP Conf Ser Earth Environ Sci 1(1):012,051. doi:10.1088/1755-1315/1/1/012051 CrossRefGoogle Scholar
  51. Sjöholm M, Mikkelsen T, Mann J, Enevoldsen K, Courtney M (2009) Spatial averaging-effects on turbulence measured by a continuous-wave coherent lidar. Meteorol Z 18(3):281–287. doi:10.1127/0941-2948/2009/0379 CrossRefGoogle Scholar
  52. Sjöholm M, Angelou N, Hansen P, Hansen KH, Mikkelsen T, Haga S, Silgjerd JA, Starsmore N (2014) Two-dimensional rotorcraft downwash flow field measurements by lidar-based wind scanners with agile beam steering. J Atmos OceanTechnol 31(4):930–937. doi:10.1175/JTECH-D-13-00010.1 Google Scholar
  53. Smalikho I (1995) On measurement of the dissipation rate of the turbulent energy with a CW Doppler lidar. Atmos Ocean Opt 8:788–793Google Scholar
  54. Solari G, Piccardo G (2001) Probabilistic 3-D turbulence modeling for gust buffeting of structures. Probab Eng Mech 16(1):73–86. doi:10.1016/S0266-8920(00)00010-2 CrossRefGoogle Scholar
  55. Sonnenschein CM, Horrigan FA (1971) Signal-to-noise relationships for coaxial systems that heterodyne backscatter from the atmosphere. Appl Opt 10(7):1600–1604. doi:10.1364/AO.10.001600 CrossRefGoogle Scholar
  56. Stawiarski C, Träumner K, Knigge C, Calhoun R (2013) Scopes and challenges of dual - Doppler lidar wind measurements - an error analysis. J Atmos Ocean Technol 30(9):2044–2062. doi:10.1175/JTECH-D-12-00244.1 CrossRefGoogle Scholar
  57. Stawiarski C, Träumner K, Kottmeier C, Knigge C, Raasch S (2015) Assessment of surface-layer coherent structure detection in dual-Doppler lidar data based on virtual measurements. Bound Layer Meteorol 156(3):371–393. doi:10.1007/s10546-015-0039-3 CrossRefGoogle Scholar
  58. Teunissen H (1980) Structure of mean winds and turbulence in the planetary boundary layer over rural terrain. Bound Layer Meteorol 19(2):187–221. doi:10.1007/BF00117220 CrossRefGoogle Scholar
  59. Toriumi R, Katsuchi H, Furuya N (2000) A study on spatial correlation of natural wind. J Wind Eng Ind Aerodyn 87(23):203–216. doi:10.1016/S0167-6105(00)00037-4 (10th International Conference on Wind Engineering)CrossRefGoogle Scholar
  60. Vickery BJ (1970) On the reliability of gust loading factors. In Proceeding Technical Meeting Concerning Wind Loads on Buildings and Structures, Building Science Series, 30, pp 296–312Google Scholar
  61. Wang H, Li A, Niu J, Zong Z, Li J (2013) Long-term monitoring of wind characteristics at Sutong Bridge site. J Wind Eng Ind Aerodyn 115:39–47. doi:10.1016/j.jweia.2013.01.006 CrossRefGoogle Scholar
  62. Wang H, Wu T, Tao T, Li A, Kareem A (2016) Measurements and analysis of non-stationary wind characteristics at Sutong Bridge in Typhoon Damrey. J Wind Eng Ind Aerodyn 151:100–106. doi:10.1016/j.jweia.2016.02.001 CrossRefGoogle Scholar
  63. Welch PD (1967) The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoust 15:70–73. doi:10.1109/TAU.1967.1161901 MathSciNetCrossRefGoogle Scholar
  64. Xu Y (2013) Wind effects on cable-supported bridges. Wiley, HobokenCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Etienne Cheynet
    • 1
  • Jasna Bogunović Jakobsen
    • 1
  • Jónas Snæbjörnsson
    • 1
    • 2
  • Torben Mikkelsen
    • 3
  • Mikael Sjöholm
    • 3
  • Jakob Mann
    • 3
  • Per Hansen
    • 3
  • Nikolas Angelou
    • 3
  • Benny Svardal
    • 4
  1. 1.Department of Mechanical and Structural Engineering and Materials ScienceUniversity of StavangerStavangerNorway
  2. 2.School of Science and EngineeringReykjavik UniversityReykjavÃkIceland
  3. 3.Department of Wind EnergyTechnical University of Denmark, Risø Campus Frederiksborgvej 399RoskildeDenmark
  4. 4.Christian Michelsen Research ASBergenNorway

Personalised recommendations