Skip to main content

Advertisement

Log in

Pulsatile flow in a compliant stenosed asymmetric model

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Time-varying velocity field in an asymmetric constricted tube is experimentally studied using a two-dimensional particle image velocimetry system. The geometry resembles a vascular disease which is characterized by arterial narrowing due to plaque deposition. The present study compares the nature of flow patterns in rigid and compliant asymmetric constricted tubes for a range of dimensionless parameters appearing in a human artery. A blood analogue fluid is employed along with a pump that mimics cardioflow conditions. The peak Reynolds number range is Re ~ 300–800, while the Womersley number range considered in experiments is Wo ~ 6–8. These values are based on the peak velocity in a straight rigid tube connected to the model, over a pulsation frequency range of 1.2–2.4 Hz. The medial-plane velocity distribution is used to investigate the nature of flow patterns. Temporal distribution of stream traces and hemodynamic factors including WSS, TAWSS and OSI at important phases of the pulsation cycle are discussed. The flow patterns obtained from PIV are compared to a limited extent against numerical simulation. Results show that the region downstream of the constriction is characterized by a high-velocity jet at the throat, while a recirculation zone, attached to the wall, evolves in time. Compliant models reveal large flow disturbances upstream during the retrograde flow. Wall shear stress values are lower in a compliant model as compared to the rigid. Cross-plane flow structures normal to the main flow direction are visible at select phases of the cycle. Positive values of largest Lyapunov exponent are realized for wall movement and are indicative of chaotic motion transferred from the flow to the wall. These exponents increase with Reynolds number as well as compliance. Period doubling is observed in wall displacement of highly compliant models, indicating possible triggering of hemodynamic events in a real artery that may cause fissure in the plaque deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Ahmed SA (1998) An experimental investigation of pulsatile flow through a smooth constriction. Exp Thermal Fluid Sci 17(4):309–318

    Article  Google Scholar 

  • Ahmed SA, Giddens DP (1983a) Flow disturbance measurements through a constricted tube at moderate Reynolds numbers. J Biomech 16(12):955–963

    Article  Google Scholar 

  • Ahmed SA, Giddens DP (1983b) Velocity measurements in steady flow through axisymmetric stenoses at moderate Reynolds numbers. J Biomech 16(7):505509–507516

    Article  Google Scholar 

  • Ahmed SA, Giddens DP (1984) Pulsatile poststenotic flow studies with laser Doppler anemometry. J Biomech 17(9):695–705

    Article  Google Scholar 

  • Aird WC (2007) Phenotypic heterogeneity of the endothelium: part I Structure, function, and mechanisms. Circ Res 100:158–173

    Article  Google Scholar 

  • Bandyopadhyay S, Layek GC (2011) Numerical computation of pulsatile flow through a locally constricted channel. Commun Nonlinear Sci Numer Simul 16(1):252–265

    Article  MathSciNet  MATH  Google Scholar 

  • Banerjee MK, Ganguly R, Datta A (2012) Effect of pulsatile flow waveform and womersley number on the flow in stenosed arterial geometry. ISRN Biomath, Art ID 853056

  • Bassiouny HS, Song RH, Hong XF, Singh A, Kocharyan H, Glagov S (1998) Flow regulation of 72-kD collagenase IV (MMP-2) after experimental arterial injury. Circulation 98(2):157–163

    Article  Google Scholar 

  • Bentzon JF, Otsuka F, Virmani R, Falk E (2014) Mechanisms of plaque formation and rupture. Circ Res 114(12):1852–1866

    Article  Google Scholar 

  • Berger SA, Jou LD (2000) Flows in stenotic vessels. Annu Rev Fluid Mech 32(1):347–382

    Article  MathSciNet  MATH  Google Scholar 

  • Bernad S, Bernad E, Susan-Resiga RE (2005) Vorticity phenomena in biomedical contexts. In: Proceedings of the workshop on vortex dominated flows: achievements and open problems. Imprimeria Mirton Press, Timisoara, pp 169–176

  • Blackburn HM, Sherwin SJ, Barkley D (2008) Convective instability and transient growth in steady and pulsatile stenotic flows. J Fluid Mech 607(1):267–277

    MathSciNet  MATH  Google Scholar 

  • Bluestein D, Niu LJ, Schoephoerster RT et al (1997) Fluid mechanics of arterial stenosis: relationship to the development of mural thrombus. Ann Biomed Eng 25:344–356

    Article  Google Scholar 

  • Bluestein D, Rambod E, Gharib M (2000) Vortex shedding as a mechanism for free emboli formation in mechanical heart valves. J Biomech Eng 122:125–134

    Article  Google Scholar 

  • Buchanan JR, Kleinstreuer C, Comer JK (2000) Rheological effects on pulsatile hemodynamics in a stenosed tube. Comput Fluids 29(6):695–724

    Article  MATH  Google Scholar 

  • Burgmann S, Große S, Schröder W, Roggenkamp J, Jansen S, Gräf F, Büsen M (2009) A refractive index-matched facility for fluid–structure interaction studies of pulsatile and oscillating flow in elastic vessels of adjustable compliance. Exp Fluids 47(4–5):865–881

    Article  Google Scholar 

  • Caro CG, Fitzgerald JM, Schroter RC (1971) Atheroma and arterial wall shear observations, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc R Soc Lond Ser B 17(7):109–159

    Article  Google Scholar 

  • Cassanova RA, Giddens DP (1978) Disorder distal to modeled stenoses in steady and pulsatile flow. J Biomech 11(10):441–453

    Article  Google Scholar 

  • Cecchi E, Giglioli C, Valente S, Lazzeri C, Gensini GF, Abbate R, Mannini L (2011) Role of hemodynamic shear stress in cardiovascular disease. Atherosclerosis 214(2):249–256

    Article  Google Scholar 

  • Chappell DC, Varner SE, Nerem RM, Medford RM, Alexander RW (1998) Oscillatory shear stress stimulates adhesion molecule expression in cultured human endothelium. Circ Res 82(5):532–539

    Article  Google Scholar 

  • Cheng JW (2001) Recognition, pathophysiology, and management of acute myocardial infarction. Am J Health Syst Pharm 58(18):1709–1718

    Google Scholar 

  • Chiu JJ, Chien S (2011) Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev 91(1):327–387

    Article  Google Scholar 

  • Cunningham KS, Gotlieb AI (2005) The role of shear stress in the pathogenesis of atherosclerosis. Lab Invest 85(1):9–23

    Article  Google Scholar 

  • Davies MJ, Thomas AC (1985) Plaque-fissuring—the cause of acute myocardial infarction, sudden ischaemic death, and crescendo angina. Br Heart J 53:363–373

    Article  Google Scholar 

  • Deng X, Marois Y, King MW, Guidoin R (1994) Uptake of 3H-7-cholesterol along the arterial wall at an area of stenosis. ASAIO J 40(2):186–191

    Article  Google Scholar 

  • DePaola N, Grimbrone MA, Davies PF, Dewey CF (1992) Vascular endothelium responds to fluid shear stress gradient. Arterioscler Thromb 12:1254–1257

    Article  Google Scholar 

  • Deplano V, Siouffi M (1999) Experimental and numerical study of pulsatile flows through stenosis: wall shear stress analysis. J Biomech 32(10):1081–1090

    Article  Google Scholar 

  • Deshpande MD, Giddens DP, Mabon RF (1976) Steady laminar flow through modelled vascular stenoses. J Biomech 9(4):165–174

    Article  Google Scholar 

  • Dewey CF, Bussolari SR, Gimbrone MA, Davies PF (1981) The dynamic response of vascular endothelial cells to fluid shear stress. ASME J Biomech Eng 103:177–185

    Article  Google Scholar 

  • Duncan DD, Bargeron CB, Borchardt SE, Deters OJ, Gearhart SA, Mark FF, Friedman MH (1990) The effect of compliance on wall shear in casts of a human aortic bifurcation. J Biomech Eng 112(2):183–188

    Article  Google Scholar 

  • Dutta S, Panigrahi PK, Muralidhar K (2008) Experimental investigation of flow past a square cylinder at an angle of incidence. J Eng Mech 134(9):788–803

    Article  Google Scholar 

  • Eguchi T, Watanabe S, Takahara H, Furukawa A (2003) Development of pulsatile flow experiment system and PIV measurement in an elastic tube. Mem Fac Eng Kyushu Univ 63(3):161–172

    Google Scholar 

  • Einav S, Bluestein D (2004) Dynamics of blood flow and platelet transport in pathological vessels. Ann N Y Acad Sci 1015(1):351–366

    Article  Google Scholar 

  • Friedman MH, Hutchins GM, Bargeron CB, Deters OJ, Mark FF (1981) Correlation between intimal thickness and fluid shear in human arteries. Atherosclerosis 39(3):425–436

    Article  Google Scholar 

  • Friedman MH, Bargeron CB, Deters OJ, Hutchins GM, Mark FF (1987) Correlation between wall shear and intimal thickness at a coronary artery branch. Atherosclerosis 68(1):27–33

    Article  Google Scholar 

  • Fry DL (1968) Acute vascular endothelial changes associated with increased blood velocity gradients. Circ Res 22(2):165–197

    Article  Google Scholar 

  • Fry DL (1969) Certain histological and chemical responses of the vascular interface to acutely induced mechanical stress in the aorta of the dog. Circ Res 24(1):93–108

    Article  Google Scholar 

  • Gawaz M (2004) Role of platelets in coronary thrombosis and reperfusion of ischemic myocardium. Cardiovasc Res 61(3):498–511

    Article  Google Scholar 

  • Geoghegan PH, Buchmann N, Jermy M, Nobes D, Spence C, Docherty PD (2010) SPIV and image correlation measurements of surface displacement during pulsatile flow in models of compliant, healthy and stenosed arteries. In: 15th international symposium of laser techniques to fluid mechanics, Lisbon, Portugal, 5th–8th July

  • Geoghegan PH, Buchmann NA, Soria J, Jermy MC (2013) Time-resolved PIV measurements of the flow field in a stenosed, compliant arterial model. Exp Fluids 54(5):1–19

    Article  Google Scholar 

  • Geoghegan PH, Jermy MC, Nobes DS (2016) A PIV comparison of the flow field and wall shear stress in rigid and complaint models of healthy carotid arteries. J Mech Med Biol. doi:10.1142/S0219519417500415

    Google Scholar 

  • Giddens DP, Zarins CK, Glagov S (1993) The role of fluid mechanics in the localization and detection of atherosclerosis. J Biomech Eng 115(4B):588–594

    Article  Google Scholar 

  • Glagov S, Zarins CK, Giddens DP, Ku DN (1988) Hemodynamics and atherosclerosis, insights and perspectives gamed from studies of human arteries. Arch Pathol Lab Med 112:1018

    Google Scholar 

  • Gohil TB, McGregor R, Szczerba D, Burckhardt K, Muralidhar K, Szekely G (2012) Simulation of oscillatory flow in an aortic bifurcation using FVM and FEM: a comparative study. Int J Numer Methods Fluids 66(8):1037–1067

    Article  MathSciNet  MATH  Google Scholar 

  • Griffith MD, Leweke T, Thompson MC, Hourigan K (2008) Steady inlet flow in stenotic geometries: convective and absolute instabilities. J Fluid Mech 616:111–133

    Article  MATH  Google Scholar 

  • Griffith MD, Leweke T, Thompson MC, Hourigan K (2009) Pulsatile flow in stenotic geometries: flow behaviour and stability. J Fluid Mech 622:291–320

    Article  MathSciNet  MATH  Google Scholar 

  • Griffith MD, Leweke T, Thompson MC, Hourigan K (2013) Effect of small asymmetries on axisymmetric stenotic flow. J Fluid Mech 721:R1

    Article  MATH  Google Scholar 

  • Jilkova ZM, Deplano V, Verdier C, Toungara M, Geindreau C, Duperray A (2013) Wall shear stress and endothelial cells dysfunction in the context of abdominal aortic aneurysms. Comput Methods Biomech Biomed Eng 16:27–29

    Article  Google Scholar 

  • Kadohama T, Nishimura K, Hoshino Y, Sasajima T, Sumpio BE (2007) Effects of different types of fluid shear stress on endothelial cell proliferation and survival. J Cell Physiol 212(1):244–251

    Article  Google Scholar 

  • Keane RD, Adrian RJ (1990) Optimization of particle image velocimeters. I. Double pulsed systems. Meas Sci Technol 1(11):1202

    Article  Google Scholar 

  • Khalifa AMA, Giddens DP (1981) Characterization and evolution of poststenotic flow disturbances. J Biomech 14(5):279–296

    Article  Google Scholar 

  • Ku DN, Giddens DP, Zarins CK, Glagov S (1985) Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arterioscler Thromb Vasc Biol 5(3):293–302

    Article  Google Scholar 

  • Kuban BD, Friedman MH (1995) The effect of pulsatile frequency on wall shear in a compliant cast of a human aortic bifurcation. J Biomech Eng 117(2):219–223

    Article  Google Scholar 

  • Layek GC, Midya C (2007) Effect of constriction height on flow separation in a two-dimensional channel. Commun Nonlinear Sci Numer Simul 12(5):745–759

    Article  MathSciNet  MATH  Google Scholar 

  • Lee KW, Xu XY (2002) Modelling of flow and wall behaviour in a mildly stenosed tube. Med Eng Phys 24(9):575–586

    Article  Google Scholar 

  • Lee TS, Liu X, Li GC, Low HT (2007) Numerical study on sinusoidal fluctuated pulsatile laminar flow through various constrictions. Commun Comput Phys 2(1):99–122

    MathSciNet  Google Scholar 

  • Liao W, Lee TS, Low HT (2004) Numerical studies of physiological pulsatile flow through constricted tube. Int J Numer Meth Heat Fluid Flow 14(5):689–713

    Article  MATH  Google Scholar 

  • Long Q, Xu XY, Ramnarine KV, Hoskins P (2001) Numerical investigation of physiologically realistic pulsatile flow through arterial stenosis. J Biomech 34(10):1229–1242

    Article  Google Scholar 

  • Lovald S, Heinrich J, Khraishi T, Yonas H, Pappu S (2009) The role of fluid dynamics in plaque excavation and rupture in the human carotid bifurcation: a computational study. Int J Exp Comput Biomech 1(1):76–95. doi:10.1504/ijecb.2009.02286

    Article  Google Scholar 

  • Mahapatra TR, Layek GC, Maiti MK (2002) Unsteady laminar separated flow through constricted channel. Int J Non-Linear Mech 37(2):171–186

    Article  MATH  Google Scholar 

  • Malek AM, Alper SL, Izumo S (1999) Hemodynamic shear stress and its role in atherosclerosis. JAMA 282(21):2035–2042

    Article  Google Scholar 

  • Mallinger F, Drikakis D (2002) Instability in three-dimensional, unsteady, stenotic flows. Int J Heat Fluid Flow 23(5):657–663

    Article  Google Scholar 

  • Marques PF, Oliveira MEC, Franca AS, Pinotti M (2003) Modeling and simulation of pulsatile blood flow with a physiologic wave pattern. Artif Organs 27(5):478–485

    Article  Google Scholar 

  • Mijovic B, Liepsch D (2003) Experimental flow studies in an elastic Y-model. Technol Health Care 11(2):115–141

    Google Scholar 

  • Mitsumata M, Fishel RS, Nerem RM, Alexander RW, Berk BC (1993) Fluid shear stress stimulates platelet-derived growth factor expression in endothelial cells. Am J Physiol 265:H3–H8

    Google Scholar 

  • Mittal R, Simmons SP, Najjar F (2003) Numerical study of pulsatile flow in a constricted channel. J Fluid Mech 485:337–378

    Article  MATH  Google Scholar 

  • Moore JE, Xu C, Glagov S, Zarins CK, Ku DN (1994) Fluid wall shear stress measurements in a model of the human abdominal aorta: oscillatory behavior and relationship to atherosclerosis. Atherosclerosis 110(2):225–240

    Article  Google Scholar 

  • Nerem RM (1992) Vascular fluid mechanics, the arterial wall, and atherosclerosis. J Biomech Eng 114(3):274–282

    Article  Google Scholar 

  • Nerem RM (1995) Atherosclerosis and the role of wall shear stress. In: Flow-dependent regulation of vascular function. Springer, New York, pp 300–319

  • Nerem RM (2013) Atherosclerosis and the role of wall shear stress. In: Bevan JA, Kaley G, Rubanyi GM (eds) Flow-dependent regulation of vascular function, chap 14. Springer, New York, pp 300–319

  • Nerem RM, Levesque MJ (1987) Fluid mechanics in atherosclerosis. In: Skalak R, Chien S (eds) Handbook of bioengineering. McGraw-Hill, New York, pp 21.1–21.22

    Google Scholar 

  • Nerem RM, Seed WA (1972) An in vivo study of aortic flow disturbances. Cardiovasc Res 6(1):1–14

    Article  Google Scholar 

  • Nerem RM, Levesque MJ, Cornhill JF (1981) Vascular endothelial morphology as an indicator of blood flow. ASME J Biomech Eng 103:172–176

    Article  Google Scholar 

  • Nesbitt WS, Westein E, Tovar-Lopez FJ, Tolouei E, Mitchell A, Fu J, Carberry J, Fouras A, Jackson SP (2009) A shear gradient–dependent platelet aggregation mechanism drives thrombus formation. Nat Med 15(6):665–673

    Article  Google Scholar 

  • Nichols W, O’Rourke M, Vlachopoulos C (eds) (2011) McDonald’s blood flow in arteries: theoretical, experimental and clinical principles. CRC Press, Boca Raton

    Google Scholar 

  • Ohara T, Toyoda K, Otsubo R, Nagatsuka K, Kubota Y, Yasaka M, Naritomi H, Minematsu K (2008) Eccentric stenosis of the carotid artery associated with ipsilateral cerebrovascular events. Am J Neuroradiol 29(6):1200–1203

    Article  Google Scholar 

  • Ojha M, Cobbold RS, Johnston KW, Hummel RL (1989) Pulsatile flow through constricted tubes: an experimental investigation using photochromic tracer methods. J Fluid Mech 203:173–197

    Article  Google Scholar 

  • Olgac U, Kurtcuoglu V, Poulikakos D (2008) Computational modeling of coupled blood-wall mass transport of LDL: effects of local wall shear stress. Am J Physiol Heart Circ Physiol 294(2):H909–H919

    Article  Google Scholar 

  • Parashar A, Singh R, Panigrahi PK, Muralidhar K (2013) Chaotic flow in an aortic aneurysm. J Appl Phys 113(21):214909

    Article  Google Scholar 

  • Paul C, Das MK, Muralidhar K (2015) Three-dimensional simulation of pulsatile flow through a porous bulge. Transp Porous Media 107(3):843–870

    Article  MathSciNet  Google Scholar 

  • Pedley TJ (1979) The fluid mechanics of large blood vessels. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Pedrizzetti G (1996) Unsteady tube flow over an expansion. J Fluid Mech 310:89–111

    Article  MATH  Google Scholar 

  • Pielhop K, Klaas M, Schröder W (2012) Analysis of the unsteady flow in an elastic stenotic vessel. Eur J Mech B Fluids 35:102–110

    Article  Google Scholar 

  • Pielhop K, Klaas M, Schröder W (2015) Experimental analysis of the fluid–structure interaction in finite-length straight elastic vessels. Eur J Mech B Fluids 50:71–88

    Article  Google Scholar 

  • Rathee Y, Vinoth BR, Panigrahi PK, Muralidhar K (2015) Imaging flow during impingement of differentially heated jets over a flat surface. Nucl Eng Des 294:1–15

    Article  Google Scholar 

  • Rosenstein MT, Collins JJ, De Luca CJ (1993) A practical method for calculating largest Lyapunov exponents from small data sets. Phys D 65(1):117–134

    Article  MathSciNet  MATH  Google Scholar 

  • Ryval J, Straatman AG, Steinman DA (2003) Low Reynolds number modeling of pulsatile flow in a moderately constricted geometry. In: 11th annual conference of the CFD Society of Canada, Vancouver

  • Salsac AV, Sparks SR, Chomaz JM, Lasheras JC (2006) Evolution of the wall shear stresses during the progressive enlargement of symmetric abdominal aortic aneurysms. J Fluid Mech 560:19–51

    Article  MATH  Google Scholar 

  • Shaaban AM, Duerinckx AJ (2000) Wall shear stress and early atherosclerosis: a review. Am J Roentgenol 174(6):1657–1665

    Article  Google Scholar 

  • Sherwin SJ, Blackburn HM (2005) Three-dimensional instabilities and transition of steady and pulsatile axisymmetric stenotic flows. J Fluid Mech 533:297–327

    Article  MathSciNet  MATH  Google Scholar 

  • Siegel JM, Markou CP, Ku DN, Hanson SR (1994) A scaling law for wall shear rate through an arterial stenosis. J Biomech Eng 116(4):446–451

    Article  Google Scholar 

  • Siouffi M, Pelissier R, Farahifar D, Rieu R (1984) The effect of unsteadiness on the flow through stenoses and bifurcations. J Biomech 17(5):299–315

    Article  Google Scholar 

  • Siouffi M, Deplano V, Pélissier R (1997) Experimental analysis of unsteady flows through a stenosis. J Biomech 31(1):11–19

    Article  Google Scholar 

  • Tambasco M, Steinman DA (2003) Path-dependent hemodynamics of the stenosed carotid bifurcation. Ann Biomed Eng 31(9):1054–1065

    Article  Google Scholar 

  • Tang D, Yang C, Kobayashi S, Ku DN (2001) Steady flow and wall compression in stenotic arteries: a three-dimensional thick-wall model with fluid–wall interactions. J Biomech Eng 123(6):548–557

    Article  Google Scholar 

  • Taylor TW, Yamaguchi T (1994) Three-dimensional simulation of blood flow in an abdominal aortic aneurysm—steady and unsteady flow cases. J Biomech Eng 116(1):89–97

    Article  Google Scholar 

  • Tu C, Deville M (1996) Pulsatile flow of non-Newtonian fluids through arterial stenoses. J Biomech 29(7):899–908

    Article  Google Scholar 

  • Tu C, Deville M, Dheur L, Vanderschuren L (1992) Finite element simulation of pulsatile flow through arterial stenosis. J Biomech 25(10):1141–1152

    Article  Google Scholar 

  • Turunen MP, Hiltunen MO, Yla-Herttuala S (1999) Gene therapy for angiogenesis, restenosis and related diseases. Exp Gerontol 34:567–574

    Article  Google Scholar 

  • Tutty OR (1992) Pulsatile flow in a constricted channel. J Biomech Eng 114(1):50–54

    Article  Google Scholar 

  • Usmani AY, Muralidhar K (2016) Oscillatory flow in an enlarged compliant vasculature. Biomed Phys Eng Express 2(2):025016

    Article  Google Scholar 

  • Varghese SS, Frankel SH, Fischer PF (2007a) Direct numerical simulation of stenotic flows. Part 1. Steady flow. J Fluid Mech 582:253–280

    Article  MathSciNet  MATH  Google Scholar 

  • Varghese SS, Frankel SH, Fischer PF (2007b) Direct numerical simulation of stenotic flows. Part 2. Pulsatile flow. J Fluid Mech 582:281–318

    Article  MathSciNet  MATH  Google Scholar 

  • Varghese SS, Frankel SH, Fischer PF (2008) Modeling transition to turbulence in eccentric stenotic flows. J Biomech Eng 130(1):014503

    Article  Google Scholar 

  • Vétel J, Garon A, Pelletier D, Farinas MI (2008) Asymmetry and transition to turbulence in a smooth axisymmetric constriction. J Fluid Mech 607:351–386

    Article  MATH  Google Scholar 

  • Wells MK, Winter DC, Nelson AW, McCarthy TC (1977) Blood velocity patterns in coronary arteries. J Biomech Eng 99(1):26–32

    Article  Google Scholar 

  • Yagi M, Okada E, Ninomiya K, Kihara M (2009) Postoperative outcome after modified unilateral-approach microendoscopic midline decompression for degenerative spinal stenosis: clinical article. J Neurosurg Spine 10(4):293–299

    Article  Google Scholar 

  • Yongchareon W, Young DF (1979) Initiation of turbulence in models of arterial stenoses. J Biomech 12(3):185–196

    Article  Google Scholar 

  • Young DF, Tsai FY (1973a) Flow characteristics in models of arterial stenoses—I. Steady flow. J Biomech 6(4):395IN3403–395IN402410

    Article  Google Scholar 

  • Young DF, Tsai FY (1973b) Flow characteristics in models of arterial stenoses—II. Unsteady flow. J Biomech 6(5):547–559

    Article  Google Scholar 

  • Zaman AG, Helft G, Worthley SG, Badimon JJ (2000) The role of plaque rupture and thrombosis in coronary artery disease. Atherosclerosis 149(2):251–266

    Article  Google Scholar 

  • Zarins CK, Taylor CA (1996) Hemodynamic factors in atherosclerosis. In: Moore WS (ed) Vascular surgery/a comprehensive review. Saunders Company, Philadelphia, PA, pp 97–110

  • Zendehbudi GR, Moayeri MS (1999) Comparison of physiological and simple pulsatile flows through stenosed arteries. J Biomech 32(9):959–965

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Muralidhar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1098 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usmani, A.Y., Muralidhar, K. Pulsatile flow in a compliant stenosed asymmetric model. Exp Fluids 57, 186 (2016). https://doi.org/10.1007/s00348-016-2274-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-016-2274-x

Keywords

Navigation