Experiments in Fluids

, 57:110 | Cite as

A biomimetic bi-leaflet mitral prosthesis with enhanced physiological left ventricular swirl restorative capability

Research Article
  • 255 Downloads

Abstract

Mechanical heart valve prostheses are often implanted in young patients due to their durability and long-term reliability. However, existing designs are known to induce elevated levels of blood damage and blood platelet activation. As a result, there is a need for patients to undergo chronic anti-coagulation treatment to prevent thrombosis, often resulting in bleeding complications. Furthermore, recent studies have suggested that the implantation of a mechanical prosthetic valve at the mitral position results in a significant alteration of the left ventricular flow field which may contribute to flow turbulence. This study proposes a bi-leaflet mechanical heart valve design (Bio-MHV) that mimics the geometry of a human mitral valve, with the aim of reducing turbulence levels in the left ventricle by replicating physiological flow patterns. An in vitro three-dimensional particle velocimetry imaging experiment was carried out to compare the hemodynamic performance of the Bio-MHV with that of the clinically established ATS valve. The Bio-MHV was found to replicate physiological left ventricular flow patterns and produced lower turbulence levels.

References

  1. Alemu Y, Bluestein D (2007) Flow-induced platelet activation and damage accumulation in a mechanical heart valve: numerical studies. Artif Organs 31(9):677–688. doi:10.1111/j.1525-1594.2007.00446.x CrossRefGoogle Scholar
  2. Alemu Y, Girdhar G, Xenos M, Sheriff J, Jesty J, Einav S, Bluestein D (2010) Design optimization of a mechanical heart valve for reducing valve thrombogenicity—a case study with ATS valve. ASAIO J 56(5):389–396. doi:10.1097/MAT.0b013e3181e65bf9 CrossRefGoogle Scholar
  3. Cantwell BJ (1981) Organized motion in turbulent flow. Annu Rev Fluid Mech 13(1):457–515. doi:10.1146/annurev.fl.13.010181.002325 MathSciNetCrossRefGoogle Scholar
  4. Dasi LP, Ge L, Simon HA, Sotiropoulos F, Yoganathan AP (2007) Vorticity dynamics of a bileaflet mechanical heart valve in an axisymmetric aorta. Phys Fluids 19(6):067105. doi:10.1063/1.2743261 CrossRefMATHGoogle Scholar
  5. Faludi R, Szulik M, D’Hooge J, Herijgers P, Rademakers F, Pedrizzetti G, Voigt JU (2010) Left ventricular flow patterns in healthy subjects and patients with prosthetic mitral valves: an in vivo study using echocardiographic particle image velocimetry. J Thorac Cardiovasc Surg 139(6):1501–1510. doi:10.1016/j.jtcvs.2009.07.060 CrossRefGoogle Scholar
  6. Ge L, Dasi LP, Sotiropoulos F, Yoganathan AP (2008) Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs. viscous stresses. Ann Biomed Eng 36(2):276–297. doi:10.1007/s10439-007-9411-x CrossRefGoogle Scholar
  7. Gharib M, Rambod E, Kheradvar A, Sahn DJ, Dabiri JO (2006) Optimal vortex formation as an index of cardiac health. Proc Natl Acad Sci USA 103(16):6305–6308CrossRefGoogle Scholar
  8. Govindarajan V, Udaykumar HS, Chandran KB (2009) Flow dynamic comparison between recessed hinge and open pivot bi-leaflet heart valve designs. J Mech Med Biol 9(2):161–176. doi:10.1142/S0219519409002912 CrossRefGoogle Scholar
  9. Grigioni M, Daniele C, D’Avenio G, Barbaro V (1999) A discussion on the threshold limit for hemolysis related to Reynolds shear stress. J Biomech 32(10):1107–1112CrossRefGoogle Scholar
  10. Ikonomidis JS, Kratz JM, Crumbley AJ 3rd, Stroud MR, Bradley SM, Sade RM, Crawford FA Jr (2003) Twenty-year experience with the St Jude Medical mechanical valve prosthesis. J Thorac Cardiovasc Surg 126(6):2022–2031. doi:10.1016/j.jtcvs.2003.07.005 CrossRefGoogle Scholar
  11. Jafri SM (2004) Periprocedural thromboprophylaxis in patients receiving chronic anticoagulation therapy. Am Heart J 147(1):3–15CrossRefGoogle Scholar
  12. Jeong J, Hussain F (1995) On the identification of a vortex. J Fluid Mech 285:69–94MathSciNetCrossRefMATHGoogle Scholar
  13. Kaneko T, Aranki S, Javed Q, McGurk S, Shekar P, Davidson M, Cohn L (2014) Mechanical versus bioprosthetic mitral valve replacement in patients <65 years old. J Thorac Cardiovasc Surg 147(1):117–126. doi:10.1016/j.jtcvs.2013.08.028 CrossRefGoogle Scholar
  14. Leo HL, He Z, Ellis JT, Yoganathan AP (2002) Microflow fields in the hinge region of the CarboMedics bileaflet mechanical heart valve design. J Thorac Cardiovasc Surg 124(3):561–574CrossRefGoogle Scholar
  15. Li CP, Lo CW, Lu PC (2010) Estimation of viscous dissipative stresses induced by a mechanical heart valve using PIV data. Ann Biomed Eng 38(3):903–916. doi:10.1007/s10439-009-9867-y CrossRefGoogle Scholar
  16. Li CP, Chen SF, Lo CW, Lu PC (2011) Turbulence characteristics downstream of a new trileaflet mechanical heart valve. ASAIO J 57(3):188–196. doi:10.1097/MAT.0b013e318213f9c2 CrossRefGoogle Scholar
  17. Moidl R, Simon P, Wolner E, Trial O-XPHV (2002) The On-X prosthetic heart valve at five years. Ann Thorac Surg 74(4):S1312–S1317CrossRefGoogle Scholar
  18. Nollert G, Miksch J, Kreuzer E, Reichart B (2003) Risk factors for atherosclerosis and the degeneration of pericardial valves after aortic valve replacement. J Thorac Cardiovasc Surg 126(4):965–968. doi:10.1016/S0022 CrossRefGoogle Scholar
  19. Pedrizzetti G, Domenichini F (2005) Nature optimizes the swirling flow in the human left ventricle. Phys Rev Lett 95(10):108101CrossRefGoogle Scholar
  20. Pedrizzetti G, Domenichini F, Tonti G (2010) On the left ventricular vortex reversal after mitral valve replacement. Ann Biomed Eng 38(3):769–773. doi:10.1007/s10439-010-9928-2 CrossRefGoogle Scholar
  21. Pedrizzetti G, La Canna G, Alfieri O, Tonti G (2014) The vortex-an early predictor of cardiovascular outcome? Nat Rev Cardiol 11(9):545–553CrossRefGoogle Scholar
  22. Pottebaum TS, Gharib M (2004) The pinch-off process in a starting buoyant plume. Exp Fluids 37(1):87–94. doi:10.1007/s00348-004-0788-0 CrossRefGoogle Scholar
  23. Puskas J, Gerdisch M, Nichols D, Quinn R, Anderson C, Rhenman B, Investigators P (2014) Reduced anticoagulation after mechanical aortic valve replacement: interim results from the prospective randomized on-X valve anticoagulation clinical trial randomized food and drug administration investigational device exemption trial. J Thorac Cardiovasc Surg 147(4):1202–1210. doi:10.1016/j.jtcvs.2014.01.004 CrossRefGoogle Scholar
  24. Quinlan NJ, Dooley PN (2007) Models of flow-induced loading on blood cells in laminar and turbulent flow, with application to cardiovascular device flow. Ann Biomed Eng 35(8):1347–1356. doi:10.1007/s10439-007-9308-8 CrossRefGoogle Scholar
  25. Sezai A, Hata M, Niino T, Yoshitake I, Kasamaki Y, Hirayama A, Minami K (2010) Fifteen years of experience with ATS mechanical heart valve prostheses. J Thorac Cardiovasc Surg 139(6):1494–1500. doi:10.1016/j.jtcvs.2009.07.039 CrossRefGoogle Scholar
  26. Sheng J, Meng H, Fox RO (2000) A large eddy PIV method for turbulence dissipation rate estimation. Chem Eng Sci 55(20):4423–4434. doi:10.1016/S0009-2509(00)00039-7 CrossRefGoogle Scholar
  27. Simon HA, Leo HL, Carberry J, Yoganathan AP (2004) Comparison of the hinge flow fields of two bileaflet mechanical heart valves under aortic and mitral conditions. Ann Biomed Eng 32(12):1607–1617CrossRefGoogle Scholar
  28. Smagorinsky J (1963) General circulation experiments with the primitive equations. Mon Weather Rev 91(3):99–164. doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2 CrossRefGoogle Scholar
  29. Vukićević M, Fortini S, Querzoli G, Espa S, Pedrizzetti G (2012) Experimental study of an asymmetric heart valve prototype. Eur J Mech B Fluids 35:54–60. doi:10.1016/j.euromechflu.2012.01.014 CrossRefGoogle Scholar
  30. Wang Q, Sun W (2013) Finite element modeling of mitral valve dynamic deformation using patient-specific multi-slices computed tomography scans. Ann Biomed Eng 41(1):142–153. doi:10.1007/s10439-012-0620-6 CrossRefGoogle Scholar
  31. Westaby S, Van Nooten G, Sharif H, Pillai R, Caes F (1996) Valve replacement with the ATS open pivot bileaflet prosthesis. Eur J Cardiothorac Surg 10(8):660–665CrossRefGoogle Scholar
  32. Yen JH, Chen SF, Chern MK, Lu PC (2014) The effect of turbulent viscous shear stress on red blood cell hemolysis. J Artif Organs 17(2):178–185. doi:10.1007/s10047-014-0755-3 CrossRefGoogle Scholar
  33. Yin W, Alemu Y, Affeld K, Jesty J, Bluestein D (2004) Flow-induced platelet activation in bileaflet and monoleaflet mechanical heart valves. Ann Biomed Eng 32(8):1058–1066CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Sean Guo-Dong Tan
    • 1
  • Sangho Kim
    • 1
  • Hwa Liang Leo
    • 1
  1. 1.Department of Biomedical Engineering, Faculty of EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations