Skip to main content

Experimental investigation of the Faraday instability on a patterned surface


The effect of patterned substrates on the onset and behavior of the Faraday instability is studied experimentally. We show that the onset of Faraday standing waves in a vertically oscillating layer of liquid can be delayed due to the topography of the underlying two-dimensional patterned substrate. The magnitude of this stabilization effect can be predicted by existing linear stability theories, and we provide an additional physical explanation for the behavior. These observations suggest the feasibility of exploiting the Faraday instability in thin liquid layers in practical engineering systems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. Benjamin TB, Ursell F (1954) The stability of the plane free surface of a liquid in vertical periodic motion. Proc R Soc A 225:505–515

    MathSciNet  Article  MATH  Google Scholar 

  2. Bechhoefer J, Ego V, Manneville S, Johnson B (1995) An experimental study of the onset of parametrically pumped surface waves in viscous fluids. J Fluid Mech 288:325–350

    Article  Google Scholar 

  3. Davies A, Heathershaw A (1984) Surface-wave propagation over sinusoidally varying topography. J Fluid Mech 144:419–443

    Article  Google Scholar 

  4. Douady S (1990) Experimental study of the Faraday instability. J Fluid Mech 221:383–409

    Article  Google Scholar 

  5. Faraday M (1831) On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces. Philos Trans R Soc B 121:299–340

    Article  Google Scholar 

  6. Freschi AA, Caetano N, Santarine GA, Hessel R (2003) Laser interferometric characterization of a vibrating speaker system. Am J Phys 71:1121–1126

    Article  Google Scholar 

  7. Génevaux JM, Dauchez N, Doutres O (2009) Nonlinear damping of a plate using Faraday instability of a fluid film. J Sound Vib 326:150–160

    Article  Google Scholar 

  8. Hu Y, Miao G (2008) Water surface wave in an annular trough with periodic topographical bottom under vertical vibration. In: Nonlinear acoustic-fundamentals and applications: 18th international symposium on nonlinear acoustics-ISNA 18, vol 1022. AIP Publishing, pp 131–134

  9. Kumar K, Tuckerman LS (1994) Parametric instability of the interface between two fluids. J Fluid Mech 279:49–68

    MathSciNet  Article  MATH  Google Scholar 

  10. Matthiessen L (1868) Akustische versuche, die kleinsten transversalwellen der flüssigkeiten betreffend. Ann Phys 210:107–117

    Article  Google Scholar 

  11. Müller HW, Friedrich R, Papathanassiou D (1998) Theoretical and experimental investigations of the Faraday instability. In: Busse FH, Müller SC (eds) Evolution of spontaneous structures in dissipative continuous systems. Springer, Berlin, pp 230–265

    Chapter  Google Scholar 

  12. Müller HW, Wittmer H, Wagner C, Albers J, Knorr K (1997) Analytic stability theory for faraday waves and the observation of the harmonic surface response. Phys Rev Lett 78:2357

    Article  Google Scholar 

  13. Osipov V, García N (2001) Space-time parametric excitation of localized standing waves on a surface of a fluid in a vessel with corrugated bottom. Phys Lett 283:209–215

    MathSciNet  Article  MATH  Google Scholar 

  14. Rayleigh JWS (1883) On the crispations of fluid resting upon a vibrating support. Philos Mag 16:50–58

    Article  Google Scholar 

  15. Takagi S, Krinsky V, Pumir A, Frelin C (2002) The use of Faraday instability to produce defined topological organization in cultures of mammalian cells. IJBC 12:2009–2019

    MathSciNet  MATH  Google Scholar 

  16. Wang Q, Hua Z, Miao G, Wei R (2007) Water surface wave in a trough with periodical topographic bottom. Chin Phys Lett 24:2285

    Article  Google Scholar 

  17. Wang Q, Yun Y, Miao G (2006) The stability of the plane free surface of water in a vertical vibrated vessel with corrugated bottom. Ultrasonics 44:e1483–e1485

    Article  Google Scholar 

  18. Wexler JS, Grosskopf A, Chow M, Fan Y, Jacobi I, Stone HA (2015) Robust liquid-infused surfaces through patterned wettability. Soft Matter 11:5023–5029

    Article  Google Scholar 

  19. Wong TS, Kang SH, Tang SK, Smythe EJ, Hatton BD, Grinthal A, Aizenberg J (2011) Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477:443–447

    Article  Google Scholar 

  20. Wright P, Saylor J (2003) Patterning of particulate films using faraday waves. Rev Sci Instrum 74:4063–4070

    Article  Google Scholar 

Download references


We thank Jason S. Wexler and Yuyang Fan for help with the fabrication of the patterned surfaces. This work was supported under ONR MURI Grants N00014-12-1-0875 and N00014-12-1-0962 (Program Manager Dr Ki-Han Kim).

Author information



Corresponding author

Correspondence to Howard A. Stone.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Feng, J., Jacobi, I. & Stone, H.A. Experimental investigation of the Faraday instability on a patterned surface. Exp Fluids 57, 86 (2016).

Download citation


  • Surface Wave
  • Liquid Layer
  • Flat Bottom
  • Speed Profile
  • Laser Vibrometer