Skip to main content
Log in

Fast PSP measurements of wall-pressure fluctuation in low-speed flows: improvements using proper orthogonal decomposition

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Fast pressure-sensitive paint (PSP) is very useful in flow diagnostics due to its fast response and high spatial resolution, but its applications in low-speed flows are usually challenging due to limitations of paint’s pressure sensitivity and the capability of high-speed imagers. The poor signal-to-noise ratio in low-speed cases makes it very difficult to extract useful information from the PSP data. In this study, unsteady PSP measurements were made on a flat plate behind a cylinder in a low-speed wind tunnel (flow speed from 10 to 17 m/s). Pressure fluctuations (ΔP) on the plate caused by vortex–plate interaction were recorded continuously by fast PSP (using a high-speed camera) and a microphone array. Power spectrum of pressure fluctuations and phase-averaged ΔP obtained from PSP and microphone were compared, showing good agreement in general. Proper orthogonal decomposition (POD) was used to reduce noise in PSP data and extract the dominant pressure features. The PSP results reconstructed from selected POD modes were then compared to the pressure data obtained simultaneously with microphone sensors. Based on the comparison of both instantaneous ΔP and root-mean-square of ΔP, it was confirmed that POD analysis could effectively remove noise while preserving the instantaneous pressure information with good fidelity, especially for flows with strong periodicity. This technique extends the application range of fast PSP and can be a powerful tool for fundamental fluid mechanics research at low speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

A :

Matrix consists of mode coefficients

A(T):

PSP calibration coefficient

B(T):

PSP calibration coefficient

D :

Diameter of the cylinder

I :

Intensity

I ref :

Intensity at reference condition

K :

Discrete matrix of field parameter

M :

Finite number of POD modes

Ma :

Mach number

P :

Pressure

P ref :

Pressure at reference condition

P rms :

Root-mean-square of pressure fluctuation

R :

Temporal correlation matrix

St :

Strouhal number

V :

Freestream velocity

a n :

Mode coefficients

c :

Length of the flat plate

d :

Thickness of the flat plate

k :

Instantaneous field parameter

\(\bar{k}\) :

Time-average field parameter

k′:

Fluctuation of field parameter

n pe_ref :

Full-well capacity of a CCD at reference condition

t :

Time from the start of PSP data recording

x :

Coordinate in streamwise direction

y :

Coordinate in spanwise direction

ΔP :

Pressure fluctuation

ΔP min :

Noise floor of PSP measurement

Δt :

Time interval of instantaneous pressure data

Λ :

Diagonal matrix with eigenvalues

σ n :

Spatial eigenfunctions

φ :

Phase

References

  • Asai K, Yorita D (2011) Unsteady PSP measurement in low-speed flow—overview of recent advancement at Tohoku University. In: 49th AIAA aerospace sciences meeting, AIAA, vol 847. doi:10.2514/6.2011-847

  • Bell JH (2004) Applications of pressure-sensitive paint to testing at very low flow speeds. In: 42nd AIAA aerospace sciences meeting and exhibit, AIAA, vol 878. doi:10.2514/6.2004-878

  • Berkooz G, Holmes P, Lumley JL (1993) The proper orthogonal decomposition in the analysis of turbulent flows. Ann Rev Fluid Mech 25:539–575. doi:10.1146/annurev.fl.25.010193.002543

    Article  MathSciNet  Google Scholar 

  • Chen JM, Chiou CC (1998) Experimental investigation of a parallel vortex-plate interaction. J Fluid Struct 12:295–314. doi:10.1006/jfls.1997.0141

    Article  Google Scholar 

  • Crafton JW, Fonov SD, Goss LP, Jones EG, Reeder MW (2006) Comparison of radiometric and lifetime based pressure sensitive paints for low speed pressure measurements. In: 44th AIAA aerospace sciences meeting and exhibit, AIAA, p 1041. doi:10.2514/6.2006-1041

  • Crafton J, Fonov S, Forlines R, Palluconi S (2013) Development of pressure-sensitive paint systems for low speed flows and large wind tunnels. In: 51st AIAA aerospace sciences meeting, AIAA, vol 482. doi:10.2514/6.2013-482

  • Gordeyev S, De Lucca N, Jumper E, Hird K, Juliano TJ, Gregory JW, Thordahl J, Wittich DJ (2014) Comparison of unsteady pressure fields on turrets with different surface features using pressure-sensitive paint. Exp Fluids 55:1661. doi:10.1007/s00348-013-1661-9

    Article  Google Scholar 

  • Gregory JW, Asai K, Kameda M, Liu T, Sullivan JP (2008) A review of pressure-sensitive paint for high-speed and unsteady aerodynamics. Proc Inst Mech Eng G J Aerosp 222:249–290. doi:10.1243/09544100JAERO243

    Article  Google Scholar 

  • Gregory JW, Sakaue H, Liu T, Sullivan JP (2014) Fast pressure-sensitive paint for flow and acoustic diagnostics. Ann Rev Fluid Mech 56:303–330. doi:10.1146/annurev-fluid-010313-141304

    Article  MathSciNet  MATH  Google Scholar 

  • Hird K, Juliano TJ, Gregory JW, Gordeyev S, De Lucca N, Jumper E, Thordahl J, Wittich DJ (2013) Study of unsteady surface pressure on a turret via pressure-sensitive paint. In: 44th AIAA plasmadynamics and lasers conference, AIAA, vol 3135. doi:10.2514/6.2013-3135

  • Kaykayoglu R, Rockwell D (1985) Vortices incident upon a leading edge: instantaneous pressure fields. J Fluid Mech 156:439–461. doi:10.1017/S002211208500218X

    Article  Google Scholar 

  • Le Sant Y, Bouvier F, Merienne MC, Peron JL (2001) Low speed tests using PSP at ONERA. In: 39th AIAA aerospace sciences meeting and exhibit, AIAA, vol 555. doi:10.2514/6.2001-555

  • Lee I, Sung HJ (2002) Multiple-arrayed pressure measurement for investigation of the unsteady flow structure of a reattaching shear layer. J Fluid Mech 463:377–402. doi:10.1017/S002211200200890X

    Article  MATH  Google Scholar 

  • Liu T (2003) Pressure-correction method for low-speed pressure-sensitive paint measurements. AIAA J 41:906–911. doi:10.2514/2.2026

    Article  Google Scholar 

  • Liu YZ, Zhang QS (2016) Dynamic mode decomposition of separated flow over a blunt plate: time-resolved particle image velocimetry measurements. Exp Fluids 56:148. doi:10.1007/s00348-015-2021-8

    Article  Google Scholar 

  • Liu T, Guille M, Sullivan JP (2001) Accuracy of pressure-sensitive paint. AIAA J 39:103–112. doi:10.2514/2.1276

    Article  Google Scholar 

  • Liu YZ, Ke F, Chen HP, Sung HJ (2007) A wall-bounded turbulent mixing layer flow over an open step. Part 2: unsteady characteristics. J Turbul 8:1–17. doi:10.1080/14685240601064749

    Article  Google Scholar 

  • Liu YZ, Shi LL, Zhang QS (2011) Proper orthogonal decomposition of wall-pressure fluctuations under the constrained wake of a square cylinder. Exp Therm Fluid Sci 35:1325–1333. doi:10.1016/j.expthermflusci.2011.05.001

    Article  Google Scholar 

  • McGraw CM, Bell JH, Khalil G, Callis JB (2006) Dynamic surface pressure measurements on a square cylinder with pressure sensitive paint. Exp Fluids 40:203–211. doi:10.1007/s00348-005-0059-8

    Article  Google Scholar 

  • Nakakita K (2007) Unsteady pressure distribution measurement around 2D-cylinders using pressure-sensitive paint. In: 25th AIAA applied aerodynamics conference, AIAA, vol 3819. doi:10.2514/6.2007-3819

  • Nakakita K (2010) Scanning unsteady PSP technique for high-frequency and small-pressure fluctuation in low-speed. In: 27th AIAA aerodynamic measurement technology and ground testing conference, AIAA, vol 4920. doi:10.2514/6.2010-4920

  • Nakakita K (2011) Unsteady pressure measurement on NACA0012 model using global low-speed unsteady PSP technique. In: 41st AIAA fluid dynamics conference and exhibit, AIAA, vol 3901. doi:10.2514/6.2011-3901

  • Park JH, Lee DJ (1999) Behavior of the secondary vortex during a vortex-wedge interaction. AIAA J 37(9):1131–1133. doi:10.2514/2.826

    Article  Google Scholar 

  • Pastuhoff M, Yorita D, Asai K, Alfredsson PH (2013) Enhancing the signal-to-noise ratio of pressure sensitive paint data by singular value decomposition. Meas Sci Technol 24:075301. doi:10.1088/0957-0233/24/7/075301

    Article  Google Scholar 

  • Peng D, Liu YZ (2016) A grid-pattern PSP/TSP system for simultaneous pressure and temperature measurements. Sens Actuators B Chem 222:141–150. doi:10.1016/j.snb.2015.08.070

    Article  Google Scholar 

  • Peng D, Jensen CD, Juliano TJ, Gregory JW, Crafton J, Palluconi S, Liu T (2013) Temperature-compensated fast pressure-sensitive paint. AIAA J 51:2420–2431. doi:10.2514/1.J052318

    Article  Google Scholar 

  • Quinn MK, Gongora-Orozco N, Kontis K, Ireland P (2013) Application of pressure-sensitive paint to low-speed flow around a U-bend of strong curvature. Exp Therm Fluid Sci 48:58–66. doi:10.1016/j.expthermflusci.2013.02.008

    Article  Google Scholar 

  • Schmid PJ (2010) Dynamic mode decomposition of numerical and experimental data. J Fluid Mech 656:5–28. doi:10.1017/S0022112010001217

    Article  MathSciNet  MATH  Google Scholar 

  • Scroggin AM, Slamovich EB, Crafton JW, Lachendo N, Sullivan JP (1999) Porous polymer/ceramic composites for luminescent-based temperature and pressure measurement. MRS Proc 560:347–352. doi:10.1557/PROC-560-347

    Article  Google Scholar 

  • Sirovich L (1987) Turbulence and the dynamics of coherent structures. I—coherent structures. II—symmetries and transformations. III—dynamics and scaling. Q Appl Math 45:561–571

    MathSciNet  MATH  Google Scholar 

  • Szepessy S, Bearman PW (1992) Aspect ratio and end plate effects on vortex shedding from a circular cylinder. J Fluid Mech 234:191–217. doi:10.1017/S0022112092000752

    Article  Google Scholar 

  • Williamson CHK (1996) Vortex dynamics in the cylinder wake. Annu Rev Fluid Mech 28:477–539. doi:10.1146/annurev.fl.28.010196.002401

    Article  MathSciNet  Google Scholar 

  • Yamashita T, Sugiura H, Nagai H, Asai K, Ishida K (2007) Pressure-sensitive paint measurement of the flow around a simplified car model. J Vis Jpn 10:289–298. doi:10.1007/BF03181696

    Article  Google Scholar 

  • Yorita D, Nagai H, Asai K, Narumi T (2010) Unsteady PSP technique for measuring naturally-disturbed periodic phenomena. In: 48th AIAA aerospace sciences meeting, AIAA, vol 307. doi:10.2514/6.2010-307

  • Yu YH (2000) Rotor blade-vortex interaction noise. Prog Aerosp Sci 36:97–115. doi:10.1016/S03760421(99)00012-3

    Article  Google Scholar 

  • Zhang QS, Liu YZ, Wang SF (2014) The identification of coherent structures using proper orthogonal decomposition and dynamic mode decomposition. J Fluid Struct 49:53–72. doi:10.1016/j.jfluidstructs.2014.04.002

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the young faculty startup fund from Shanghai Jiao Tong University, National Natural Science Foundation of China (NSFC No. 11502144), and funding from Gas Turbine Research Institute of Shanghai Jiao Tong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingzheng Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, D., Wang, S. & Liu, Y. Fast PSP measurements of wall-pressure fluctuation in low-speed flows: improvements using proper orthogonal decomposition. Exp Fluids 57, 45 (2016). https://doi.org/10.1007/s00348-016-2130-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-016-2130-z

Keywords

Navigation