Experiments in Fluids

, 57:28 | Cite as

Schlieren imaging of viscous fingering in a horizontal Hele-Shaw cell

  • P. Bunton
  • D. Marin
  • S. Stewart
  • E. Meiburg
  • A. De Wit
Research Article

Abstract

Interfaces between different fluids can be unstable with regard to hydrodynamic instabilities such as viscous fingering or buoyancy-driven convection. To study such instabilities experimentally for transparent fluids, dyes or chemical indicators are most often used to track the dynamics. While the interfacial deformation can easily be tracked by color changes, it is difficult to have access to the internal flow structure for comparison with theoretical predictions. To overcome this problem, a modification of a Schlieren technique is introduced to image 3D flows during viscously driven instabilities in a horizontal Hele-Shaw cell without using any dye or chemical indicator. The method is exquisitely sensitive, readily yielding information about 3D flows in gaps under a millimeter and allowing imaging of the flow structure internal to the fingers, rather than merely imaging the flow boundary. Following a description of the technique, visualization of dynamics for nonreactive water–glycerol and reactive displacements is presented revealing previously unobserved internal flows. These flows are tentatively interpreted in terms of known theoretical predictions.

Keywords

Astigmatism Streamwise Vortex Virtual Image Schlieren Imaging Gravitational Instability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank Macy Tush for assisting with data collection and John Pojman of the Louisiana State University for proposing the reactive step-growth polymerization system. P.B. acknowledges support of the National Science Foundation Grant CBET-1335739. A.D. thanks Prodex and FRS-FNRS under the FORECAST project for financial support. E.M. acknowledges support through NSF Grant CBET-0651498.

Supplementary material

Supplementary material 1 (MP4 6205 kb)

Supplementary material 2 (MP4 11950 kb)

References

  1. Al-Housseiny TT, Tsai PA, Stone HA (2012) Control of interfacial instabilities using flow geometry. Nat Phys 8:747–750CrossRefGoogle Scholar
  2. Almarcha C, Trevelyan PMJ, Grosfils P, De Wit A (2010a) Chemically-driven hydrodynamic instabilities around A + B → C fronts. Phys Rev Lett 104:044501CrossRefGoogle Scholar
  3. Almarcha C, Trevelyan PMJ, Riolfo LA et al (2010b) Active role of color indicators in buoyancy-driven instabilities of chemical fronts. J Phys Chem Lett 1:752–757CrossRefGoogle Scholar
  4. Almarcha C, R’Honi Y, De Decker Y, Trevelyan PMJ, Eckert K, De Wit A (2011) Convective mixing induced by acid-base reactions. J Phys Chem B 115:9739–9744CrossRefGoogle Scholar
  5. Bunton P, Dice B, Pojman JA, De Wit A, Brau F (2014) Quantitative viscosity field reconstruction of Hele-Shaw flows by imaging fluorescent molecular probes. Phys Fluid 26:114106 CrossRefGoogle Scholar
  6. Carballido-Landeira J, Trevelyan PMJ, Almarcha C, De Wit A (2013) Mixed-mode instability of a miscible interface due to coupling between Rayleigh–Taylor and double-diffusive convective modes. Phys Fluids 25:024107CrossRefGoogle Scholar
  7. de Anna P, Jimenez-Martinez J, Tabuteau H et al (2014) Mixing and reaction kinetics in porous media: an experimental pore scale quantification. Environ Sci Technol 48:508–516CrossRefMATHGoogle Scholar
  8. Dias E, Parisio F, Miranda J (2010) Suppression of viscous fluid fingering: a piecewise-constant injection process. Phys Rev E 82:067301CrossRefGoogle Scholar
  9. Fernandez J, Kurowski P, Petitjeans P, Meiburg E (2002) Density-driven unstable flows of miscible fluids in a Hele-Shaw cell. J Fluid Mech 451:239–260CrossRefMathSciNetMATHGoogle Scholar
  10. Grosfils P, Dubois F, Yourassowsky C, De Wit A (2009) Hot spots revealed by simultaneous experimental measurement of the two-dimensional concentration and temperature fields of an exothermic chemical front during finger-pattern formation. Phys Rev E 79:017301CrossRefGoogle Scholar
  11. Haudin F, Riolfo LA, Knaepen B, Homsy GM, De Wit A (2014) Experimental study of a buoyancy-driven instability of a miscible horizontal displacement in a Hele-Shaw cell. Phys Fluids 26:044102CrossRefGoogle Scholar
  12. Heussler F, Oliveira R, John M, Meiburg E (2014) Three-dimensional Navier–Stokes simulations of buoyant, vertical miscible Hele-Shaw displacements. J Fluid Mech 752:157–183CrossRefMathSciNetGoogle Scholar
  13. Homsy GM (1987) Viscous fingering in porous media. Ann Rev Fluid Mech 19:271–311CrossRefGoogle Scholar
  14. Joannes L, Dubois F, Legros J (2003) Phase-shifting schlieren: high-resolution quantitative schlieren that uses the phase-shifting technique principle. Appl Opt 42:5046–5053CrossRefGoogle Scholar
  15. John MO, Oliveira RM, Heussler FHC, Meiburg E (2013) Variable density and viscosity, miscible displacements in horizontal Hele-Shaw cells. Part 2. Nonlinear simulations. J Fluid Mech 721:295–323CrossRefMathSciNetMATHGoogle Scholar
  16. Kuster S, Riolfo LA, Zalts A et al (2011) Differential diffusion effects on buoyancy-driven instabilities of acid-base fronts: the case of a color indicator. Phys Chem Chem Phys 13:17295–17303CrossRefGoogle Scholar
  17. Loodts V, Thomas C, Rongy L, De Wit A (2014) Control of convective dissolution by chemical reactions: general classification and application to CO2 dissolution in reactive aqueous solutions. Phys Rev Lett 113:114501CrossRefGoogle Scholar
  18. Maes R, Rousseaux G, Scheid B, Mishra M, Colinet P, De Wit A (2010) Experimental study of dispersion and miscible viscous fingering of initially circular samples in Hele-Shaw cells. Phys Fluids 22:123104CrossRefGoogle Scholar
  19. Meyer-Arendt JR (1995) Introduction to classical and modern optics. Prentice Hall, Englewood CliffsGoogle Scholar
  20. Nagatsu Y, De Wit A (2011) Viscous fingering of a miscible reactive A + B → C interface for an infinitely fast chemical reaction: nonlinear simulations. Phys Fluids 23:043103CrossRefGoogle Scholar
  21. Newman AA (1968) Glycerol. C. R. C. Press, ClevelandGoogle Scholar
  22. Oliveira RM, Meiburg E (2011) Miscible displacements in Hele-Shaw cells: three-dimensional Navier–Stokes simulations. J Fluid Mech 687:431–460CrossRefMathSciNetMATHGoogle Scholar
  23. Petitjeans P, Maxworthy T (1996) Miscible displacements in capillary tubes. Part 1. Experiments. J Fluid Mech 326:37–56CrossRefGoogle Scholar
  24. Pihler-Puzović D, Illien P, Heil M, Juel A (2012) Suppression of complex fingerlike patterns at the interface between air and a viscous fluid by elastic membranes. Phys Rev Lett 108:074502CrossRefGoogle Scholar
  25. Riolfo LA, Nagatsu Y, Iwata S, Maes R, Trevelyan PMJ, De Wit A (2012) Experimental evidence of reaction-driven miscible viscous fingering. Phys Rev E 85:015304CrossRefGoogle Scholar
  26. Rose HEL, Britton MM (2013) Magnetic resonance imaging of reaction-driven viscous fingering in a packed bed. Microporous Mesoporous Mater 2013:64–68CrossRefGoogle Scholar
  27. Settles GS (2001) Schlieren and shadowgraph techniques. Springer, BerlinCrossRefMATHGoogle Scholar
  28. Talon L, Goyal N, Meiburg E (2013) Variable density and viscosity, miscible displacements in horizontal Hele-Shaw cells. Part 1: linear stability analysis. J Fluid Mech 721:268–294CrossRefMathSciNetMATHGoogle Scholar
  29. Ternström G, Sjöstrand A, Aly G, Jernqvist Å (1996) Mutual diffusion coefficients of water + ethylene glycol and water + glycerol mixtures. J Chem Eng Data 41:876–879CrossRefGoogle Scholar
  30. Thomas C, Lemaigre L, Zalts A, D’Onofrio A, De Wit A (2015) Experimental study of CO2 convective dissolution: the effect of color indicators. Int J Greenh Gas Control 42:525–533CrossRefGoogle Scholar
  31. Toepler A (1864) Beobachtungen nach einer neuen optischen Methode - Ein Beitrag zur Experimentalphysik. M. Cohen & Son, BonnGoogle Scholar
  32. Wildenschild D, Sheppard A (2013) X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Adv Water Resour 51:217–246CrossRefGoogle Scholar
  33. Wooding RA (1969) Growth of fingers at an unstable diffusing interface in a porous medium or Hele-Shaw cell. J Fluid Mech 39:477–495CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • P. Bunton
    • 1
  • D. Marin
    • 1
  • S. Stewart
    • 1
  • E. Meiburg
    • 2
  • A. De Wit
    • 3
  1. 1.Department of PhysicsWilliam Jewell CollegeLibertyUSA
  2. 2.Department of Mechanical EngineeringUniversity of California at Santa BarbaraSanta BarbaraUSA
  3. 3.Nonlinear Physical Chemistry Unit, Service de Chimie Physique et Biologie ThéoriqueUniversité libre de Bruxelles (ULB)BrusselsBelgium

Personalised recommendations