Advertisement

Experiments in Fluids

, 57:23 | Cite as

Estimation and optimization of loss-of-pair uncertainties based on PIV correlation functions

  • Sven Scharnowski
  • Christian J. Kähler
Research Article

Abstract

The uncertainty quantification of particle image velocimetry (PIV) measurements is still an open problem, and to date, no consensus exists about the best suited approach. When the spatial resolution is not appropriate, the largest uncertainties are usually caused by flow gradients. But also the amount of loss-of-pairs due to out-of-plane flow motion and insufficient light-sheet overlap causes strong uncertainties in real experiments. In this paper, we show how the amount of loss-of-pairs can be quantified using the volume of the correlation function normalized by the volume of the autocorrelation function. The findings are an important step toward a reliable uncertainty estimation of instantaneous planar velocity fields computed from PIV and stereo-PIV data. Another important consequence of the analysis is that the results allow for the optimization of PIV and stereo-PIV setups in view of minimizing the total error. In particular, it is shown that the best results (concerning the relative uncertainty) can be achieved if the out-of-plane loss-of-correlation is smaller than one (F o ). The only exception is the case where the out-of-plane motion is exactly zero. The predictions are confirmed experimentally in the last part of the paper.

Keywords

Particle Image Velocimetry Particle Image Relative Uncertainty Interrogation Window Shift Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to thank Donald McEligot, Barton Smith and John Charonko for stimulating discussions about error estimation. Technical language revisions by Istvan Bolgar are also appreciated.

References

  1. Adrian RJ (1988) Double exposure, multiple-field particle image velocimetry for turbulent probability density. Opt Laser Eng 9:211–228. doi: 10.1016/S0143-8166(98)90004-5 CrossRefGoogle Scholar
  2. Adrian RJ, Westerweel J (2010) Particle image velocimetry. Cambridge University Press, CambridgeGoogle Scholar
  3. Boillot A, Prasad A (1996) Optimization procedure for pulse separation in cross-correlation PIV. Exp Fluids 21(2):87–93. doi: 10.1007/BF00193911 CrossRefGoogle Scholar
  4. Charonko JJ, Vlachos PP (2013) Estimation of uncertainty bounds for individual particle image velocimetry measurements from cross-correlation peak ratio. Meas Sci Technol 24(6):065301. doi: 10.1088/0957-0233/24/6/065301 CrossRefGoogle Scholar
  5. Christensen K, Scarano F (2015) Uncertainty quantification in particle image velocimetry. Meas Sci Technol 26(7):070201. doi: 10.1088/0957-0233/26/7/070201 CrossRefGoogle Scholar
  6. Kähler CJ, Scholz U (2006) Transonic jet analysis using long-distance micro PIV. In: 12th International symposium on flow visualization, Göttingen, GermanyGoogle Scholar
  7. Kähler CJ, Sammler B, Kompenhans J (2002) Generation and control of particle size distributions for optical velocity measurement techniques in fluid mechanics. Exp Fluids 33:736–742. doi: 10.1007/s00348-002-0492-x CrossRefGoogle Scholar
  8. Kähler CJ, Scholz U, Ortmanns J (2006) Wall-shear-stress and near-wall turbulence measurements up to single pixel resolution by means of long-distance micro-PIV. Exp Fluids 41:327–341. doi: 10.1007/s00348-006-0167-0 CrossRefGoogle Scholar
  9. Kähler CJ, Scharnowski S, Cierpka C (2012a) On the resolution limit of digital particle image velocimetry. Exp Fluids 52:1629–1639. doi: 10.1007/s00348-012-1280-x CrossRefGoogle Scholar
  10. Kähler CJ, Scharnowski S, Cierpka C (2012b) On the uncertainty of digital PIV and PTV near walls. Exp Fluids 52:1641–1656. doi: 10.1007/s00348-012-1307-3 CrossRefGoogle Scholar
  11. Keane RD, Adrian RJ (1990) Optimization of particle image velocimeters. Part I: double pulsed systems. Meas Sci Technol 1:1202–1215. doi: 10.1088/0957-0233/1/11/013 CrossRefGoogle Scholar
  12. Keane RD, Adrian RJ (1992) Theory of cross-correlation analysis of PIV images. Appl Sci Res 49:191–215. doi: 10.1007/BF00384623 CrossRefGoogle Scholar
  13. Meinhart CD, Wereley ST, Santiago JG (2000) A PIV algorithm for estimating time-averaged velocity fields. J Fluids Eng 122:285–289. doi: 10.1115/1.483256 CrossRefGoogle Scholar
  14. Neal DR, Sciacchitano A, Smith BL, Scarano F (2015) Collaborative framework for PIV uncertainty quantification: the experimental database. Meas Sci Technol 26. doi: 10.1088/0957-0233/26/7/074003
  15. Raffel M, Willert CE, Wereley ST, Kompenhans J (2007) Particle image velocimetry: a practical guide. Springer, BerlinGoogle Scholar
  16. Scharnowski S, Kähler CJ (2013) On the effect of curved streamlines on the accuracy of PIV vector fields. Exp Fluids 54:1435. doi: 10.1007/s00348-012-1435-9 CrossRefGoogle Scholar
  17. Scharnowski S, Hain R, Kähler CJ (2012) Reynolds stress estimation up to single-pixel resolution using PIV-measurements. Exp Fluids 52:985–1002. doi: 10.1007/s00348-011-1184-1 CrossRefGoogle Scholar
  18. Sciacchitano A, Wieneke B, Scarano F (2013) PIV uncertainty quantification by image matching. Meas Sci Technol 24(4):045302. doi: 10.1088/0957-0233/24/4/045302 CrossRefGoogle Scholar
  19. Sciacchitano A, Neal DR, Smith BL, Warner SO, Vlachos PP, Wieneke B, Scarano F (2015) Collaborative framework for PIV uncertainty quantification: comparative assessment of methods. Meas Sci Technol 26:074004. doi: 10.1088/0957-0233/26/7/074004 CrossRefGoogle Scholar
  20. Soria J, Willert C (2012) On measuring the joint probability density function of three-dimensional velocity components in turbulent flows. Meas Sci Technol 23:065301. doi: 10.1088/0957-0233/23/6/065301 CrossRefGoogle Scholar
  21. Stanislas M, Okamoto K, Kähler CJ (2003) Main results of the first international PIV challenge. Meas Sci Technol 14:R63–R89. doi: 10.1088/0957-0233/14/10/201 CrossRefGoogle Scholar
  22. Stanislas M, Okamoto K, Kähler CJ, Westerweel J (2005) Main results of the second international PIV challenge. Exp Fluids 39:170–191. doi: 10.1007/s00348-005-0951-2 CrossRefGoogle Scholar
  23. Stanislas M, Okamoto K, Kähler CJ, Westerweel J, Scarano F (2008) Main results of the third international PIV Challenge. Exp Fluids 45:27–71. doi: 10.1007/s00348-008-0462-z CrossRefGoogle Scholar
  24. Timmins BH, Wilson BW, Smith BL, Vlachos PP (2012) A method for automatic estimation of instantaneous local uncertainty in particle image velocimetry measurements. Exp Fluids 53(4):1133–1147. doi: 10.1007/s00348-012-1341-1 CrossRefGoogle Scholar
  25. Westerweel J (2008) On velocity gradients in PIV interrogation. Exp Fluids 44:831–842. doi: 10.1007/s00348-007-0439-3 CrossRefGoogle Scholar
  26. Wieneke B (2015) PIV uncertainty quantification from correlation statistics. Meas Sci Technol 26(7):074002. doi: 10.1088/0957-0233/26/7/074002 CrossRefGoogle Scholar
  27. Wilson BM, Smith BL (2013) Uncertainty on PIV mean and fluctuating velocity due to bias and random errors. Meas Sci Technol 24(3):035302. doi: 10.1088/0957-0233/24/3/035302 CrossRefGoogle Scholar
  28. Xue Z, Charonko JJ, Vlachos PP (2015) Particle image pattern mutual information and uncertainty estimation for particle image velocimetry. Meas Sci Technol 26(7):074001CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of Fluid Mechanics and AerodynamicsBundeswehr University MunichNeubibergGermany

Personalised recommendations