Skip to main content
Log in

Measurement of velocity fluctuations in microfluidics with simultaneously ultrahigh spatial and temporal resolution

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Although unsteady and electrokinetic flows are widely used in microfluidics, there is unfortunately no velocimeter today that can measure the random velocity fluctuation at high temporal and spatial resolution simultaneously in microfluidics. Here we, for the first time, theoretically study the temporal resolution of laser induced fluorescence photobleaching anemometer (LIFPA) and experimentally verify that LIFPA can have simultaneously ultrahigh temporal \(({\sim } 4\,\upmu \hbox {s})\) and spatial \(({\sim }203\,\hbox {nm})\) resolution and can measure velocity fluctuation up to at least 2 kHz, whose corresponding wave number is about \(6\times 10^6\,{/}\hbox {m}\) in an electrokinetically forced unsteady flow in microfluidics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adrian RJ (1991) Particle-imaging techniques for experimental fluid mechanics. Annu Rev Fluid Mech 23:261–304

    Article  Google Scholar 

  • Bown MR, MacInnes JM, Allen RWK, Zimmerman WBJ (2006) Three-dimensional, three-component velocity measurements using stereoscopic micro-piv and ptv. Meas Sci Technol 17:2175–2185

    Article  Google Scholar 

  • Breuer K (2005) Microscale diagnostic techniques. Springer, New York

    Book  Google Scholar 

  • Burghelea T, Segre E, Bar-Joseph I, Groisman A, Steinberg V (2004) Chaotic flow and efficient mixing in a microchannel with a polymer solution. Phys Rev E 69(6):066,305

    Article  Google Scholar 

  • Comte-Bellot G (1976) Hot-wire anemometry. Annu Rev Fluid Mech 8:209–231

    Article  Google Scholar 

  • Fouxon A, Lebedev V (2003) Spectra of turbulence in dilute polymer solutions. Phys Fluids 15(7):2060–2072 (1994-present)

    Article  MATH  Google Scholar 

  • Hu H, Koochesfahani MM (2006) Molecular tagging velocimetry and thermometry and its application to the wake of a heated circular cylinder. Meas Sci Technol 17:1269–1281

    Article  Google Scholar 

  • Kinoshita H, Kaneda S, Fujii T, Oshima M (2007) Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-piv. Lab Chip 7:338–346

    Article  Google Scholar 

  • Kirby B (2010) Micro- and nanoscale fluid mechanics: transport in microfluidic devices. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Klein SA, Posner JD (2010) Improvement in two-frame correlations by confocal microscopy for temporally resolved micro particle imaging velocimetry. Meas Sci Technol 21:105409

    Article  Google Scholar 

  • Koochesfahani M, Nocera D (2007) Molecular tagging velocimetry. Handbook of experimental fluid dynamics. Chapter 5.4., Chapter 5.4. Springer-Verlag, New York

    Google Scholar 

  • Kuang C, Wang G (2010) Far-field nanoscopic velocimeter for nanofluidics. Lab Chip 10:240–245

    Article  Google Scholar 

  • Kuang C, Zhao W, Yang F, Wang G (2009) Measuring flow velocity distribution in microchannels using molecular tracers. Microfluidics Nanofluidics 7(4):509–517

    Article  Google Scholar 

  • Kuang C, Qiao R, Wang G (2011) Ultrafast measurement of transient electroosmotic flow in microfluidics. Microfluidics Nanofluidics 11:353–358

    Article  Google Scholar 

  • Lippincott-Schwartz J, Altan-Bonnet N, Patterson GH (2003) Photobleaching and photoactivation: following protein dynamics in living cells. Nat Cell Biol 5:S7–14

    Article  Google Scholar 

  • Nguyen NT (1997) Micromachined flow sensors-a review. Flow Meas Instrum 8(1):7–16

    Article  Google Scholar 

  • Phair RD, Misteli T (2001) Kinetic modelling approaches to in vivo imaging. Nat Rev Mol Cell Biol 2:898–907

    Article  Google Scholar 

  • Posner JD, Santiago JG (2006) Convective instability of electrokinetic flows in a cross-shaped microchannel. J Fluid Mech 555:1–42

    Article  MATH  Google Scholar 

  • Raben JS, Klein SA, Posner JD, Vlachos PP (2013) Improved accuracy of time-resolved micro-particle image velocimetry using phase-correlation and confocal microscopy. Microfluidics Nanofluidics 14:431–444

    Article  Google Scholar 

  • Ricka J (1987) Photobleaching velocimetry. Exp Fluids 5(6):381–384

    Article  Google Scholar 

  • Rossi M, Segura R, Cierpka C, Khler CJ (2012) On the effect of particle image intensity and image preprocessing on the depth of correlation in micro-piv. Exp Fluids 52:1063–1075

    Article  Google Scholar 

  • Sadr R, Hohenegger C, Li H, Mucha PJ, Yoda M (2007) Diffusion-induced bias in near-wall velocimetry. J Fluid Mech 577:443–456

    Article  MATH  Google Scholar 

  • Santiago JG, Wereley ST, Meinhart CD, Beebe DJ, Adrian RJ (1998) A particle image velocimetry system for microfluidics. Exp Fluids 25(4):316–319

    Article  Google Scholar 

  • Simes EW, Furlan R, Leminski REB, Gongora-Rubio MR, Pereira MT, Morimoto NI, Avils JJS (2005) Microfluidic oscillator for gas flow control and measurement. Flow Meas Instrum 16:7–12

    Article  Google Scholar 

  • Sugarman J, Prudhomme R (1987) Effect of photobleaching on the output of an on-column laser fluorescence detector. Ind Eng Chem Res 26:1449–1454

    Article  Google Scholar 

  • van Dinther A, Schron C, Vergeldt F, van der Sman R, Boom R (2012) Suspension flow in microfluidic devices a review of experimental techniques focussing on concentration and velocity gradients. Adv Colloid Interface Sci 173:23–34

    Article  Google Scholar 

  • Voigt A, Bayer C, Shirai K, Bttner L, Czarske J (2008) Laser Doppler field sensor for high resolution flow velocity imaging without camera. Appl Opt 47(27):5028–5040

    Article  Google Scholar 

  • Wang G, Yang F, Zhao W (2014) There can be turbulence in microfluidics at low Reynolds number. Lab Chip 14(8):1452–1458

    Article  Google Scholar 

  • Wang GR (2005) Laser induced fluorescence photobleaching anemometer for microfluidic devices. Lab Chip 5(4):450–456

    Article  Google Scholar 

  • Wang GR, Fiedler HE (2000) On high spatial resolution scalar measurement with lif. Part 2: the noise characteristics. Exp Fluids 29:265–274

    Article  Google Scholar 

  • Wang SM Dazh, Meinhart CD (2005) Experimental analysis of particle and fluid motion in ac electrokinetics. Exp Fluids 38:1–10

    Article  Google Scholar 

  • Wereley ST, Meinhart CD (2010) Recent advances in micro-particle image velocimetry. Annu Rev Fluid Mech 42:557–576

    Article  Google Scholar 

  • Westerweel J, Geelhoed P, Lindken R (2004) Single-pixel resolution ensemble correlation for mpiv applications. Exp Fluids 37:375–384

    Article  Google Scholar 

  • Zhao W, Yang F, Khan J, Reifsnider K, Wang G (2015) Corrections on lifpa velocity measurements in microchannel with moderate velocity fluctuations. Exp Fluids 56(2):39

    Article  Google Scholar 

Download references

Acknowledgments

We thanks Professor Ronald Adrian and Mike Sutton for discussion. The work was supported by NSF under Grant No. CAREER CBET-0954977 and MRI CBET-1040227, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guiren Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Yang, F., Khan, J. et al. Measurement of velocity fluctuations in microfluidics with simultaneously ultrahigh spatial and temporal resolution. Exp Fluids 57, 11 (2016). https://doi.org/10.1007/s00348-015-2106-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-015-2106-4

Keywords

Navigation