Skip to main content
Log in

Shadow imaging in bubbly gas–liquid two-phase flow in porous structures

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Shadow imaging is used for the investigation of bubbly gas–liquid two-phase flow in a porous structure. The porous structure is made of Somos\({^{\textregistered }}\) WaterShed XC 11122, a clear epoxy resin used in rapid prototyping. Optical access is provided by using an aqueous solution of sodium iodide and zinc iodide having the same refractive index as the structure material (\(n = 1.515\)). Nitrogen is injected into the continuous phase at volumetric transport fractions in the range of \(\dot{\varepsilon } = 2.4-4.1\,\%\) resulting in a hold-up of \(\varepsilon = 0.94-2.17\,\%\). The obtained images of overlapping bubble shadows are processed to measure the bubble dimensions. Therefore, a new processing sequence is developed to determine bubble dimensions from overlapping bubble shadows by ellipse fitting. The accuracy of the bubble detection and sizing routine is assessed processing synthetic images. It is shown that the developed technique is suitable for volumetric two-phase flow measurements. Important global quantities such as gas hold-up and total interfacial area can be measured with only one camera. Operation parameters for gas–liquid two-phase flows are determined to improve mass and heat transfer between the phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

A :

Area (mm2)

C :

Constant \(((\sqrt{\hbox {pix}}\,s){^{-1}})\)

D :

Sum of algebraic distances (−)

F :

Frequency threshold (Hz)

F :

Function (−)

L :

Length (mm)

Re :

Reynolds number (−)

V :

Volume (mm3)

\(a-f\) :

Coefficients (−)

\({\mathbf{{a}}}\) :

Coefficients vector (−)

a :

Major semi-axis (mm)

b :

Minor semi-axis (mm)

c :

Minor semi-axis (mm)

d :

Diameter (mm)

e :

Numerical eccentricity (−)

h :

Height (mm)

k :

Curvature (1/pix)

k :

Number of drawings (−)

n :

Refractive index (−)

p :

Sample size (−)

s :

Slip (−)

s :

Perimeter length (pix)

v :

Velocity (m/s)

\({\mathbf{{x}}}\) :

Variables vector (−)

xy :

Positions (pix)

\(x^{\prime},y^{\prime}\) :

First-order derivatives (−)

\(x^{\prime\prime},y^{\prime\prime}\) :

Second-order derivatives (1/pix)

\(\epsilon\) :

Relative error (%)

\(\varepsilon\) :

Porosity (−)

\(\varepsilon\) :

Hold-up (%)

\(\dot{\varepsilon }\) :

Volumetric transport fraction (%)

\(\eta\) :

Dynamic viscosity (kg/(m s))

\(\rho\) :

Density (kg/m3)

\(\sigma\) :

Coefficient of variation (−)

\(\sigma\) :

Surface tension (mN/m)

\(\sigma\) :

Standard deviation (−)

32:

Sauter mean

a:

Major semi-axis

b:

Bubble

c:

Cell

e:

Edging

h:

Hydraulic

int:

Interstitial

l:

Liquid

mean:

Arithmetic mean

min:

Minimum

o:

Oblate

p:

Pore

pipe:

Pipe

pr:

Prolate

PU:

Periodic unit

sp:

Spherical

b/w:

Black and white

CAD:

Computer-aided design

FFT:

Fast Fourier transform

LED:

Light-emitting diode

PIV:

Particle image velocimetry

PMMA:

Polymethyl methacrylate

PTV:

Particle tracking velocimetry

PU:

Periodic unit

\(\hbox {P} \& \hbox {ID}\) :

Process and instrumentation diagram

References

  • Akhmetbekov YK, Alekseenko SV, Dulin VM, Markovich DM, Pervunin KS (2010) Planar fluorescence for round bubble imaging and its application for the study of an axisymmetric two-phase jet. Exp Fluids 48(4):615–629. doi:10.1007/s00348-009-0797-0

    Article  Google Scholar 

  • Belden J, Ravela S, Truscott TT, Techet AH (2012) Three-dimensional bubble field resolution using synthetic aperture imaging: application to a plunging jet. Exp Fluids 53(3):839–861. doi:10.1007/s00348-012-1322-4

    Article  Google Scholar 

  • Bröder D, Sommerfeld M (2002) An advanced lif-plv system for analysing the hydrodynamics in a laboratory bubble column at higher void fractions. Exp Fluids 33(6):826–837. doi:10.1007/s00348-002-0502-z

    Article  Google Scholar 

  • Bröder D, Sommerfeld M (2007) Planar shadow image velocimetry for the analysis of the hydrodynamics in bubbly flows. Meas Sci Technol 18(8):2513–2528. doi:10.1088/0957-0233/18/8/028

    Article  Google Scholar 

  • Bros WE, Cowell BC (1987) A technique for optimizing sample size (replication). J Exp Marine Biol Ecol 114(1):63–71. doi:10.1016/0022-0981(87)90140-7

    Article  Google Scholar 

  • Butscher D, Hutter C, Kuhn S, von Rohr PR (2012) Particle image velocimetry in a foam-like porous structure using refractive index matching: a method to characterize the hydrodynamic performance of porous structures. Exp Fluids 53(4):1123–1132. doi:10.1007/s00348-012-1346-9

    Article  Google Scholar 

  • Castanet G, Dunand P, Caballina O, Lemoine F (2013) High-speed shadow imagery to characterize the size and velocity of the secondary droplets produced by drop impacts onto a heated surface. Exp Fluids 54(3):1–17. doi:10.1007/s00348-013-1489-3

    Article  Google Scholar 

  • Chaouki J, Larachi F, Dudukovic MP (1997) Non-invasive monitoring of multiphase flows. Elsevier, Amsterdam. ISBN: 978-0-444-82521-6

    Google Scholar 

  • Chen R, Fan LS (1992) Particle image velocimetry for characterizing the flow structure in three-dimensional gas-liquid-solid fluidized beds. Chem Eng Sci 47(13):3615–3622. doi:10.1016/0009-2509(92)85077-O

    Article  Google Scholar 

  • Clift R, Grace JR, Weber ME (2005) Bubbles, drops, and particles. Courier Dover Publications, Mineola

    Google Scholar 

  • Colella D, Vinci D, Bagatin R, Masi M, ABu Bakr E (1999) A study on coalescence and breakage mechanisms in three different bubble columns. Chem Eng Sci 54(21):4767–4777. doi:10.1016/S0009-2509(99)00193-1

    Article  Google Scholar 

  • DSM (2014) Product Data Sheet–Somos WaterShed XC 11122

  • Efron B (1979) Bootstrap methods: another look at the jackknife. Annals Stat 1–26

  • Fitzgibbon A, Pilu M, Fisher RB (1999) Direct least square fitting of ellipses. IEEE Trans Pattern Anal Mach Intell 21(5):476–480. doi:10.1109/34.765658

    Article  Google Scholar 

  • Fujiwara A, Danmoto Y, Hishida K, Maeda M (2004) Bubble deformation and flow structure measured by double shadow images and piv/lif. Exp Fluids 36(1):157–165. doi:10.1007/s00348-003-0691-0

    Article  Google Scholar 

  • Garnier C, Lance M, Marié J (2002) Measurement of local flow characteristics in buoyancy-driven bubbly flow at high void fraction. Exp Thermal Fluid Sci 26(6):811–815. doi:10.1016/S0894-1777(02)00198-X

    Article  Google Scholar 

  • Häfeli R, Altheimer M, Butscher D, Rudolf von Rohr P (2014) Piv study of flow through porous structure using refractive index matching. Exp Fluids 55(5):1–13. doi:10.1007/s00348-014-1717-5

    Article  Google Scholar 

  • Häfeli R, Hutter C, Damsohn M, Prasser HM, Rudolf von Rohr P (2013) Dispersion in fully developed flow through regular porous structures: experiments with wire-mesh sensors. Chem Eng Process Process Intensif 69:104–111. doi:10.1016/j.cep.2013.03.006

    Article  Google Scholar 

  • Hibiki T, Ishii M (1999) Experimental study on interfacial area transport in bubbly two-phase flows. Int J Heat Mass Transf 42(16):3019–3035. doi:10.1016/S0017-9310(99)00014-9

    Article  Google Scholar 

  • Hirschberg S, Koubek R, Moser F, Schöck J (2009) An improvement of the sulzer smx static mixer significantly reducing the pressure drop. Chem Eng Res Design 87(4):524–532. doi:10.1016/j.cherd.2008.12.021

    Article  Google Scholar 

  • Honkanen M, Elcock D, Kuo CJ, Peles Y, Amitay M (2011) Lagrangian tracking of bubbles interacting with pin-fins in a microchannel. Exp Fluids 50(6):1527–1538. doi:10.1007/s00348-010-1007-9

    Article  Google Scholar 

  • Honkanen M, Saarenrinne P, Stoor T, Niinimäki J (2005) Recognition of highly overlapping ellipse-like bubble images. Meas Sci Technol 16(9):1760. doi:10.1088/0957-0233/16/9/007

    Article  Google Scholar 

  • Hutter C, Mascarello F, Von Rohr PR, Ruppen D (2010) Device for processing and conditioning of material transported through the device. US Patent App. 13/376,266

  • Hutter C, Zenklusen A, Kuhn S, Rudolf von Rohr P (2011) Large eddy simulation of flow through a streamwise-periodic structure. Chem Eng Sci 66(3):519–529. doi:10.1016/j.ces.2010.11.015

    Article  Google Scholar 

  • Hutter C, Zenklusen A, Lang R, Rudolf von Rohr P (2011) Axial dispersion in metal foams and streamwise-periodic porous media. Chem Eng Sci 66(6):1132–1141. doi:10.1016/j.ces.2010.12.016

    Article  Google Scholar 

  • Kim JS, Kim SM, Kim HD, Ji HS, Kim KC (2012) Dynamic structures of bubble-driven liquid flows in a cylindrical tank. Exp Fluids 53(1):21–35. doi:10.1007/s00348-011-1224-x

    Article  MathSciNet  Google Scholar 

  • Kitagawa A, Hishida K, Kodama Y (2005) Flow structure of microbubble-laden turbulent channel flow measured by piv combined with the shadow image technique. Exp Fluids 38(4):466–475. doi:10.1007/s00348-004-0926-8

    Article  Google Scholar 

  • Kong XZ, Holzner M, Stauffer F, Kinzelbach W (2011) Time-resolved 3d visualization of air injection in a liquid-saturated refractive-index-matched porous medium. Exp Fluids 50(6):1659–1670. doi:10.1007/s00348-010-1018-6

    Article  Google Scholar 

  • Lance M, Bataille J (1991) Turbulence in the liquid phase of a uniform bubbly air-water flow. J Fluid Mech 222:95–118. doi:10.1017/S0022112091001015

    Article  Google Scholar 

  • Lindken R, Merzkirch W (2000) Velocity measurements of liquid and gaseous phase for a system of bubbles rising in water. Exp Fluids 29(1):S194–S201. doi:10.1007/s003480070021

    Article  Google Scholar 

  • Ma Y, Yan G, Scheuermann A, Bringemeier D, Kong XZ, Li L (2014) Size distribution measurement for densely binding bubbles via image analysis. Exp Fluids 55(12):1–6. doi:10.1007/s00348-014-1860-z

    Article  Google Scholar 

  • Murai Y, Matsumoto Y, Yamamoto F (2001) Three-dimensional measurement of void fraction in a bubble plume using statistic stereoscopic image processing. Exp Fluids 30(1):11–21. doi:10.1007/s003480000129

    Article  Google Scholar 

  • Murakawa H, Kikura H, Aritomi M (2005) Application of ultrasonic doppler method for bubbly flow measurement using two ultrasonic frequencies. Exp Thermal Fluid Sci 29(7):843–850. doi:10.1016/j.expthermflusci.2005.03.002

    Article  Google Scholar 

  • Narrow T, Yoda M, Abdel-Khalik S (2000) A simple model for the refractive index of sodium iodide aqueous solutions. Exp Fluids 28(3):282–283. doi:10.1007/s003480050389

    Article  Google Scholar 

  • Nogueira S, Sousa R, Pinto A, Riethmuller M, Campos J (2003) Simultaneous piv and pulsed shadow technique in slug flow: a solution for optical problems. Exp Fluids 35(6):598–609. doi:10.1007/s00348-003-0708-8

    Article  Google Scholar 

  • Northrup MA, Kulp TJ, Angel SM, Pinder GF (1993) Direct measurement of interstitial velocity field variations in a porous medium using fluorescent-particle image velocimetry. Chem Eng Sci 48(1):13–21. doi:10.1016/0009-2509(93)80279-Y

    Article  Google Scholar 

  • Otsu N (1975) A threshold selection method from gray-level histograms. Automatica 11(285–296):23–27

    Google Scholar 

  • Rodríguez-Rodríguez J, Martínez-Bazán C, Montañes JL (2003) A novel particle tracking and break-up detection algorithm: application to the turbulent break-up of bubbles. Meas Sci Technol 14(8):1328. doi:10.1088/0957-0233/14/8/319

    Article  Google Scholar 

  • Sathe MJ, Thaker IH, Strand TE, Joshi JB (2010) Advanced piv/lif and shadowgraphy system to visualize flow structure in two-phase bubbly flows. Chem Eng Sci 65(8):2431–2442. doi:10.1016/j.ces.2009.11.014

    Article  Google Scholar 

  • So S, Morikita H, Takagi S, Matsumoto Y (2002) Laser doppler velocimetry measurement of turbulent bubbly channel flow. Exp Fluids 33(1):135–142. doi:10.1007/s00348-002-0459-y

    Article  Google Scholar 

  • Svensson FJ, Rasmuson A (2006) Piv measurements in a liquid-liquid system at volume percentages up to 10 % dispersed phase. Exp Fluids 41(6):917–931. doi:10.1007/s00348-006-0211-0

    Article  Google Scholar 

  • Willert C, Stasicki B, Klinner J, Moessner S (2010) Pulsed operation of high-power light emitting diodes for imaging flow velocimetry. Meas Sci Technol 21(7):075,402. doi:10.1088/0957-0233/21/7/075402

    Article  Google Scholar 

  • Wu Q, Ishii M (1999) Sensitivity study on double-sensor conductivity probe for the measurement of interfacial area concentration in bubbly flow. Int J Multiph Flow 25(1):155–173. doi:10.1016/S0301-9322(98)00037-8

    Article  MATH  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support from the Swiss Confederation’s innovation promotion agency (CTI) in cooperation with DSM Nutritional Products.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Altheimer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altheimer, M., Häfeli, R., Wälchli, C. et al. Shadow imaging in bubbly gas–liquid two-phase flow in porous structures. Exp Fluids 56, 177 (2015). https://doi.org/10.1007/s00348-015-2042-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-015-2042-3

Keywords

Navigation