Skip to main content

Effect of non-Newtonian viscosity on the fluid-dynamic characteristics in stenotic vessels

Abstract

Although blood is known to have shear-thinning and viscoelastic properties, the effects of such properties on the hemodynamic characteristics in various vascular environments are not fully understood yet. For a quantitative hemodynamic analysis, the refractive index of a transparent blood analogue needs to be matched with that of the flowing conduit in order to minimize the errors according to the distortion of the light. In this study, three refractive index-matched blood analogue fluids with different viscosities are prepared—one Newtonian and two non-Newtonian analogues—which correspond to healthy blood with 45 % hematocrit (i.e., normal non-Newtonian) and obese blood with higher viscosity (i.e., abnormal non-Newtonian). The effects of the non-Newtonian rheological properties of the blood analogues on the hemodynamic characteristics in the post-stenosis region of an axisymmetric stenosis model are experimentally investigated using particle image velocimetry velocity field measurement technique and pathline flow visualization. As a result, the centerline jet flow from the stenosis apex is suppressed by the shear-thinning feature of the blood analogues when the Reynolds number is smaller than 500. The lengths of the recirculation zone for abnormal and normal non-Newtonian blood analogues are 3.67 and 1.72 times shorter than that for the Newtonian analogue at Reynolds numbers smaller than 200. The Reynolds number of the transition from laminar to turbulent flow for all blood analogues increases as the shear-thinning feature increases, and the maximum wall shear stresses in non-Newtonian fluids are five times greater than those in Newtonian fluids. However, the shear-thinning effect on the hemodynamic characteristics is not significant at Reynolds numbers higher than 1000. The findings of this study on refractive index-matched non-Newtonian blood analogues can be utilized in other in vitro experiments, where non-Newtonian features dominantly affect the flow characteristics.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Ahmed SA, Giddens DP (1983) Velocity measurements in steady flow through axisymmetric stenoses at moderate Reynolds numbers. J Biomech 16:505–516

    Article  Google Scholar 

  • Averbakh A, Shauly A, Nir A, Semiat R (1997) Slow viscous flows of highly concentrated suspensions—part I: laser-Doppler velocimetry in rectangular ducts. Int J Multiph Flow 23:409–424

    Article  MATH  Google Scholar 

  • Bai K, Katz J (2014) On the refractive index of sodium iodide solutions for index matching in PIV. Exp Fluids 55:1–6

    Article  Google Scholar 

  • Baskurt OK (2007) Handbook of hemorheology and hemodynamics vol 69. IOS press, Amsterdam

  • Blankenhorn D, Hodis H (1993) Atherosclerosis-reversal with therapy Western. J Med 159:172

    Google Scholar 

  • Bluestein D, Niu LJ, Schoephoerster RT, Dewanjee MK (1997) Fluid mechanics of arterial stenosis: relationship to the development of mural thrombus. Ann Biomed Eng 25:344–356. doi:10.1007/Bf02648048

    Article  Google Scholar 

  • Brookshier K, Tarbell J (1993) Evaluation of a transparent blood analog fluid: aqueous xanthan gum/glycerin. Biorheology 30:107–116

    Google Scholar 

  • Charm S, Kurland G (1965) Viscometry of human blood for shear rates of 0–100,000 sec-1. Nature 206:617–618

    Article  Google Scholar 

  • Cho YI, Kensey KR (1991) Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: steady flows. Biorheology 28:241–262

    Google Scholar 

  • Fabricant CG, Fabricant J (1999) Atherosclerosis induced by infection with Marek’s disease herpesvirus in chickens. Am Heart J 138:S465–S468. doi:10.1016/S0002-8703(99)70276-0

    Article  Google Scholar 

  • Gijsen F, Van de Vosse F, Janssen J (1999) The influence of the non-Newtonian properties of blood on the flow in large arteries: steady flow in a carotid bifurcation model. J Biomech 32:601–608

    Article  Google Scholar 

  • Ha H, Lee SJ (2013) Hemodynamic features and platelet aggregation in a stenosed microchannel. Microvasc Res 90:96–105. doi:10.1016/j.mvr.2013.08.008

    Article  Google Scholar 

  • Ha H, Choi W, Park H, Lee SJ (2014) Advantageous swirling flow in 45° end-to-side anastomosis. Exp Fluids 55:1–13

    Article  Google Scholar 

  • Kamiya A, Bukhari R, Togawa T (1984) Adaptive regulation of wall shear stress optimizing vascular tree function. Bull Math Biol 46:127–137

    Article  Google Scholar 

  • Kang YJ, Ryu J, Lee S-J (2013) Label-free viscosity measurement of complex fluids using reversal flow switching manipulation in a microfluidic channel Biomicrofluidics 7:044106

    Google Scholar 

  • Kim S, Namgung B, Ong PK, Cho YI, Chun KJ, Lim D (2009) Determination of rheological properties of whole blood with a scanning capillary-tube rheometer using constitutive models. J Mech Sci Technol 23:1718–1726

    Article  Google Scholar 

  • Lowe M, Kutt P (1992) Refraction through cylindrical tubes. Exp Fluids 13:315–320

    Article  Google Scholar 

  • Malek AM, Alper SL, Izumo S (1999) Hemodynamic shear stress and its role in atherosclerosis. J Am Med Assoc 282:2035–2042. doi:10.1001/jama.282.21.2035

    Article  Google Scholar 

  • Merrill EW (1969) Rheology of blood. Physiol Rev 49:863–888

    Google Scholar 

  • Molla MM, Paul M (2012) LES of non-Newtonian physiological blood flow in a model of arterial stenosis. Med Eng Phys 34:1079–1087

    Article  Google Scholar 

  • Neofytou P, Drikakis D (2003) Non-Newtonian flow instability in a channel with a sudden expansion. J Nonnewton Fluid Mech 111:127–150

    Article  MATH  Google Scholar 

  • Nguyen T, Biadillah Y, Mongrain R, Brunette J, Tardif J-C, Bertrand O (2004) A method for matching the refractive index and kinematic viscosity of a blood analog for flow visualization in hydraulic cardiovascular models. J Biomech Eng 126:529–535

    Article  Google Scholar 

  • Northrup MA, Kulp TJ, Angel SM (1991) Fluorescent particle image velocimetry: application to flow measurement in refractive index-matched porous media. Appl Opt 30:3034–3040

    Article  Google Scholar 

  • Padmanabhan N (1980) Mathematical model of arterial stenosis. Med Biol Eng Comput 18:281–286

    Article  Google Scholar 

  • Papanastasiou TC (1987) Flows of materials with yield. J Rheol (1978-present) 31:385–404

  • Pedley TJ, Luo X (1995) Fluid mechanics of large blood vessels vol 446. Cambridge University Press, Cambridge

  • Perktold K, Hilbert D (1986) Numerical simulation of pulsatile flow in a carotid bifurcation model. J Biomed Eng 8:193–199

    Article  Google Scholar 

  • Pham T, Mitsoulis E (1994) Entry and exit flows of Casson fluids The. Can J Chem Eng 72:1080–1084

    Article  Google Scholar 

  • Poelma C, Van der Heiden K, Hierck B, Poelmann R, Westerweel J (2009) Measurements of the wall shear stress distribution in the outflow tract of an embryonic chicken heart. J R Soc Interface 7(42):91–103

    Article  Google Scholar 

  • Rillaerts E, Van Gaal L, Xiang D, Vansant G, De Leeuw I (1988) Blood viscosity in human obesity: relation to glucose tolerance and insulin status. Int J Obes 13:739–745

    Google Scholar 

  • Sousa PC, Pinho FT, Oliveira MSN, Alves MA (2011) Extensional flow of blood analog solutions in microfluidic devices. Biomicrofluidics 5. doi:10.1063/1.3567888

  • Sparrow CP, Olszewski J (1993) Cellular oxidation of low density lipoprotein is caused by thiol production in media containing transition metal ions. J Lipid Res 34:1219–1228

    Google Scholar 

  • Thom T et al (2006) Heart disease and stroke statistics—2006 update—a report from the American heart association statistics committee and stroke statistics subcommittee. Circulation 113:E85–E151

    Article  Google Scholar 

  • Tovar-Lopez FJ, Rosengarten G, Westein E, Khoshmanesh K, Jackson SP, Mitchell A, Nesbitt WS (2010) A microfluidics device to monitor platelet aggregation dynamics in response to strain rate micro-gradients in flowing blood. Lab Chip 10:291–302. doi:10.1039/B916757a

    Article  Google Scholar 

  • Tretheway DC, Meinhart CD (2002) Apparent fluid slip at hydrophobic microchannel walls. Phys Fluids (1994-present) 14:L9–L12

  • Tu C, Deville M (1996) Pulsatile flow of non-Newtonian fluids through arterial stenoses. J Biomech 29(7):899–908

    Article  Google Scholar 

  • Tu C, Deville M, Dheur L, Vanderschuren L (1992) Finite element simulation of pulsatile flow through arterial stenosis. J Biomech 25:1141–1152

    Article  Google Scholar 

  • Tutty O (1992) Pulsatile flow in a constricted channel. J Biomech Eng 114:50–54

    Article  Google Scholar 

  • Walker AM, Johnston CR, Rival DE (2012) The quantification of hemodynamic parameters downstream of a Gianturco zenith stent wire using Newtonian and non-Newtonian analog fluids in a pulsatile flow environment. J Biomech Eng 134:111001

    Article  Google Scholar 

  • Walker AM, Johnston CR, Rival DE (2014) On the characterization of a non-Newtonian blood analog and its response to pulsatile flow downstream of a simplified stenosis. Ann Biomed Eng 42:97–109

    Article  Google Scholar 

  • Wiederseiner S, Andreini N, Epely-Chauvin G, Ancey C (2011) Refractive-index and density matching in concentrated particle suspensions: a review. Exp Fluids 50:1183–1206

    Article  Google Scholar 

  • Williams KJ, Tabas I (1995) The response-to-retention hypothesis of early atherogenesis. Arterioscl Throm Vas 15:551–561

    Article  Google Scholar 

  • Yousif MY, Holdsworth DW, Poepping TL (2011) A blood-mimicking fluid for particle image velocimetry with silicone vascular models. Exp Fluids 50:769–774

    Article  Google Scholar 

  • Zarins CK, Giddens DP, Bharadvaj B, Sottiurai VS, Mabon RF, Glagov S (1983) Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circulation Res 53:502–514

    Article  Google Scholar 

  • Zarins CK, Zatina MA, Giddens DP, Ku DN, Glagov S (1987) Shear stress regulation of artery lumen diameter in experimental atherogenesis. J Vasc Surg 5:413–420

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the national research foundation of Korea (NRF) and funded by the Korean government (MSIP) (Grant No. 2008-0061991)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Joon Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1067 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huh, H.K., Ha, H. & Lee, S.J. Effect of non-Newtonian viscosity on the fluid-dynamic characteristics in stenotic vessels. Exp Fluids 56, 167 (2015). https://doi.org/10.1007/s00348-015-2037-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-015-2037-0

Keywords

  • Shear Rate
  • Particle Image Velocimetry
  • Wall Shear Stress
  • Particle Image Velocimetry Measurement
  • Acrylonitrile Butadiene Styrene