Skip to main content
Log in

On the accuracy of dynamic mode decomposition in estimating instability of wave packet

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Lots of unstable flows in both nature and engineering pose multi-scale perturbations with infinitesimal initial amplitude, which compete and interact with each other during their unstable evolution. Dynamic mode decomposition (DMD) analysis can be used to extract these components’ temporal/spatial growth rate. Therefore, it is necessary to evaluate the accuracy performance and confidence limit of DMD algorithm in the circumstance of multi-scale instability wave packet. In the present study, we use a linear combination of a sinusoidal unstable wave and its high-order harmonics as a prototype, based on which an error analysis of DMD algorithm is taken. In first, different numerical algorithms of DMD analysis are compared in terms of both accuracy and efficiency. The accuracy evaluation of the classical DMD algorithm in a large parameter domain is followed. It is found that the superimposition of finer structures with less energy dominance might damage the estimation accuracy of the primary structures’ growth rate. Strong evidences suggest that even in a linear circumstance, resolving the dynamics of small-scale structures is comparably more difficult than that of the primary structures, i.e., DMD algorithm has a preference for structures with energetic dominance. Finally, the recommended thresholds for the sampling/discretizing parameters are summarized for practical usage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Adrian R (1997) On the role of conditional averages in turbulence theory. Turbul Liquids 1:323–332

    Google Scholar 

  • Aubry N (1991) On the hidden beauty of the proper orthogonal decomposition. Theoret Comput Fluid Dyn 2(5–6):339–352

    Article  MATH  Google Scholar 

  • Berkooz G, Holmes P, Lumley J (1993) The proper orthogonal decomposition in the analysis of turbulent flows. Ann Rev Fluid Mech 25(1):539–575

    Article  MathSciNet  Google Scholar 

  • Cesur ACC, Feymark A, Fuchs L, Revstedt J (2014) Analysis of the wake dynamics of stiff and flexible cantilever beams using POD and DMD. Comput Fluids 101:27–41

    Article  Google Scholar 

  • Dawson S, Hemati M, Williams M, Rowley C (2014) Characterizing and correcting for the effect of sensor noise in the dynamic mode decomposition. Bull Am Phys Soc 59(20). arXiv:1507.02264

  • DelSole T, Hou AY (1999) Empirical stochastic models for the dominant climate statistics of a general circulation model. J Atmos Sci 56(19):3436–3456

    Article  Google Scholar 

  • Duke D, Soria J, Honnery D (2012) An error analysis of the dynamic mode decomposition. Exp Fluids 52(2):529–542

    Article  Google Scholar 

  • Edwards W, Tuckerman L, Friesner R, Sorensen D (1994) Krylov methods for the incompressible navier-stokes equations. J Comput Phys 110(1):82–102

    Article  MathSciNet  MATH  Google Scholar 

  • Feng L, Wang J, Pan C (2011) Proper orthogonal decomposition analysis of vortex dynamics of a circular cylinder under synthetic jet control. Phys Fluids 23(1):014106

    Article  Google Scholar 

  • Ghommem M, Calo V, Efendiev Y (2014) Mode decomposition methods for flows in high-contrast porous media. a global approach. J Comput Phys 257:400–413

    Article  MathSciNet  Google Scholar 

  • He G, Wang J, Pan C (2013) Initial growth of a disturbance in a boundary layer influenced by a circular cylinder wake. J Fluid Mech 718:116–130

    Article  MATH  Google Scholar 

  • Hemati M, Williams M, Rowley C (2014) Dynamic mode decomposition for large and streaming datasets. Phys Fluids 26(11):111701

    Article  Google Scholar 

  • Hemati M, Rowley C (2015) De-biasing the dynamic mode decomposition for applied Koopman spectral analysis. arXiv 1502.03854

  • Hemon P, Santi F (2007) Simulation of a spatially correlated turbulent velocity field using biorthogonal decomposition. J Wind Eng Ind Aerodyn 95(1):21–29

    Article  Google Scholar 

  • Holmes P, Lumley J, Berkooz G (1998) Turbulence, coherent structures, dynamical systems and symmetry. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Jovanović M, Schmid P, Nichols J (2014) Sparsity-promoting dynamic mode decomposition. Phys Fluids 26(2):024103

    Article  Google Scholar 

  • Lehoucq R (2001) Implicitly restarted arnoldi methods and subspace iteration. Siam J Matrix Anal Appl 23(2):551–562

    Article  MathSciNet  MATH  Google Scholar 

  • Lumley JL (1970) Stochastic tools in turbulence. Academic press, New York, p 194

    MATH  Google Scholar 

  • Mezic I (2005) Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dyn 41(1–3):309–325

    Article  MathSciNet  MATH  Google Scholar 

  • Mezic I (2013) Analysis of fluid flows via spectral properties of the Koopman operator. Annu Rev Fluid Mech 45(45):357–378

    Article  MathSciNet  Google Scholar 

  • Muld T, Efraimsson G, Henningson D (2012) Flow structures around a high-speed train extracted using proper orthogonal decomposition and dynamic mode decomposition. Comput Fluids 57:87–97

    Article  MathSciNet  Google Scholar 

  • Pan C, Yu D, Wang J (2011) Dynamical mode decomposition of gurney flap wake flow. Theoret Appl Mech Lett 1(1):012002

    Article  Google Scholar 

  • Pan C, Wang H, Wang J (2013) Phase identification of quasi-periodic flow measured by particle image velocimetry with a low sampling rate. Meas Sci Technol 24(5):055305

    Article  Google Scholar 

  • Robinson S (1991) Coherent motions in the turbulent boundary layer. Annu Rev Fluid Mech 23(1):601–639

    Article  Google Scholar 

  • Rowley C, Mezic I, Bagheri S, Schlatter P, Henningson D (2009) Spectral analysis of nonlinear flows. J Fluid Mech 641:115–127

    Article  MathSciNet  MATH  Google Scholar 

  • Sampath R, Chakravarthy S (2014) Proper orthogonal and dynamic mode decompositions of time-resolved PIV of confined backward-facing step flow. Exp Fluids 55(9):1–16

    Article  Google Scholar 

  • Schmid P (2010) Dynamic mode decomposition of numerical and experimental data. J Fluid Mech 25(1–4):249–259

    Google Scholar 

  • Schmid P (2011) Application of the dynamic mode decomposition to experimental data. Exp Fluids 50(4):1123–1130

    Article  Google Scholar 

  • Schmid P, Li L, Juniper M, Pust O (2011) Applications of the dynamic mode decomposition. Theoret Comput Fluid Dyn 25(1–4):249–259

    Article  MATH  Google Scholar 

  • Sirovich L (1987) Turbulence and the dynamics of coherent structures. 2. symmetries and transformations. Q Appl Math 45(3):573–582

    MathSciNet  Google Scholar 

  • Tang Z, Jiang N (2012) Dynamic mode decomposition of hairpin vortices generated by a hemisphere protuberance. Sci China Phys Mech Astron 55(1):118–124

    Article  MathSciNet  Google Scholar 

  • Theofilis V (2003) Advances in global linear instability analysis of nonparallel and three-dimensional flows. Prog Aerosp Sci 39(4):249–315

    Article  Google Scholar 

  • Trefethen LN, Bau D (1997) Numerical linear algebra. SIAM Publishing, Philadelphia

    Book  MATH  Google Scholar 

  • Tu J, Rowley C, Kutz J, Shang J (2014a) Spectral analysis of fluid flows using sub-nyquist-rate PIV data. Exp Fluids 55(9):1–13

    Article  Google Scholar 

  • Tu J, Rowley C, Luchtenburg D, Brunton S, Kutz J (2014b) On dynamic mode decomposition: theory and applications. J Comput Dyn 1(2):391–421

    Article  Google Scholar 

  • Wang J, Shan R, Zhang C, Feng L (2010) Experimental investigation of a novel two-dimensional synthetic jet. Eur J Mech B Fluids 29(5):342–350

    Article  MATH  Google Scholar 

  • Wynn A, Pearson D, Ganapathisubramani B, Goulart P (2013) Optimal mode decomposition for unsteady flows. J Fluid Mech 733:473–503

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang Q, Liu Y, Wang S (2014) The identification of coherent structures using proper orthogonal decomposition and dynamic mode decomposition. J Fluids Struct 49:53–72

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11372001 and 11327202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, C., Xue, D. & Wang, J. On the accuracy of dynamic mode decomposition in estimating instability of wave packet. Exp Fluids 56, 164 (2015). https://doi.org/10.1007/s00348-015-2015-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-015-2015-6

Keywords

Navigation