Skip to main content
Log in

Investigation of wave phenomena on a blunt airfoil with straight and serrated trailing edges

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

An investigation of pressure waves in compressible subsonic and transonic flow around a generic airfoil is performed in a modified shock tube. New comprehensive results are presented on pressure waves in compressible flow. For the first time, the influence of trailing edge serration will be examined in terms of the reduction in pressure wave amplitude. A generic airfoil is tested in two main configurations, one with blunt trailing edges and the other one with serrated trailing edges in a Mach number range from 0.6 to 0.8 and at chord Reynolds numbers of 1 × 106 < Re c < 5 ×106. The flow of the blunt trailing edge is characterized by a regular vortex street in the wake creating a regular pattern of upstream-moving pressure waves along the airfoil. The observed pressure waves lead to strong pressure fluctuations within the local flow field. A reduction in the trailing edge thickness leads to a proportional increase in the frequency of the vortex street in the wake as well as the frequency of the waves deduced from constant Strouhal number. By serrating the trailing edge, the formation of vortices in the wake is disturbed. Therefore, also the upstream-moving waves are influenced and reduced in their strength resulting in a steadier flow. An increasing length of the saw tooth enhances the three dimensionality of the structures in the wake and causes a strong decrease in the wave amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

a,b :

Semi-axis of ellipse (mm)

c :

Chord length (mm)

d :

Trailing edge thickness (mm)

f :

Frequency (kHz)

2h :

Length of saw tooth (mm)

\(M_\infty\) :

Free stream Mach number

\(M_W\) :

Absolute Mach number of a wave

p :

Pressure (bar)

\(p_\infty\) :

Free stream pressure (bar)

\(\Delta p\) :

Pressure amplitude (bar)

\(Re_c\) :

Chord Reynolds number

\(Re_d\) :

Reynolds number based on trailing edge thickness

SPA :

Scaled pressure amplitude

\(St_d\) :

Strouhal number based on trailing edge thickness

\(St^*_d\) :

Modified Strouhal number based on trailing edge thickness

t :

Time (ms)

\(U_\infty\) :

Free stream velocity (m/s)

x :

Coordinate of x-axis (m)

y :

Coordinate of y-axis (m)

\(\alpha\) :

Angle of attack (1°)

\(\beta\) :

Deflection angle (1°)

\(\delta\) :

Boundary layer thickness (mm)

\(\delta ^*\) :

Displacement thickness (mm)

\(\varphi\) :

Sawtooth angle (1°)

\(\varphi\) :

Phase angle (rad)

\(\sigma\) :

Standard deviation (bar)

References

  • Al Shabu A (2010) Instationäre Wellenphänomene bei der Profilumströmung im Transschall. Dissertation, RWTH Aachen University

  • Alshabu A, Olivier H (2008) Unsteady wave phenomena on a supercritical airfoil. AIAA J 46(8):2066–2073. doi:10.2514/1.35516

    Article  Google Scholar 

  • Blake WK (1986) Mechanics of flow-induced sound and vibration. Harcourt Brace Jovanovich

  • Brooks TF, Hodgson TH (1981) Trailing edge noise prediction from measured surface pressure. J Sound Vib 78:68–117

    Google Scholar 

  • Chong TP, Joseph P, Gruber M (2010) An experimental study of airfoil instability noise with trailing edge serrations. In: 16th AIAA/CEAS Aeroacoustic Conference (31th AIAA Aeroacoustic Conference), Stockholm, Sweden, AIAA 2010–3723

  • Dassen T, Parchen R, Bruggeman J, Hagg F (1996) Results of wind tunnel study on the reduction of airfoil self-noise by the application of serrated blade trailing edges. NLR TP 96350

  • Gageik MA, Klioutchnikov I, Olivier H (2014) Mesh study for a direct numerical simulation of the transonic flow at \(Re_c=500,000\) around a NACA 0012 airfoil. In: DGLR Jahrestagung- Deutscher Luft- und Raumfahrtkongress, Augsburg, September 2014, DGLR-2014-0028

  • Geyer T, Sarradj E, Fritzsche C (2010) Measurement of the noise generation at the trailing edge of porous airfoils. Exp Fluids 48:291–308. doi:10.1007/s00348-009-0739-x

    Article  Google Scholar 

  • Heinemann HJ, Bütefisch KA (1978) Determination of the vortex shedding frequency of cascades with different trailing edge thicknesses. AGARD CP-227 pp 35–1 - 35–10

  • Hermes V (2013) Numerische Untersuchung des Einflusses von stromauf laufenden Druckwellen auf die Transition im Transschall. Dissertation, RWTH Aachen University, doiISBN: 978-3-8440-2715-0

  • Hermes V, Klioutchnikov I, Olivier H (2011a) DNS of laminar/turbulent transition at subsonic speed. In: Jahresbericht zum 15. STAB-Workshop, Göttingen, November 2011, S. 52–53

  • Hermes V, Nies J, Klioutchnikov I, Olivier H (2011b) Wave processes in transonic airfoil flows. In: 28th international symposium on shock waves, ISSW-2486, Manchester

  • Herr M (2007) On the design of silent trailing-edges. New Results Numer Exp Fluid Mech 6(96):430–437. doi:10.1007/978-3-540-74460-3_53

    Google Scholar 

  • Herr M, Dobrzynski W (2005) Experimental investigations in low-noise trailing-edge design. AIAA J 43(6):1167–1175. doi:10.2514/1.11101

    Article  Google Scholar 

  • Howe MS (1991a) Aerodynamic noise of a serrated trailing edge. J Fluids Struct 5:33–45

    Article  Google Scholar 

  • Howe MS (1991b) Noise produced by a sawtooth trailing edge. Acoust Soc Am 90(1):482–487. doi:10.1121/1.401273

    Article  Google Scholar 

  • Howe MS (1999) Trailing edge noise at low mach numbers. J Sound Vib 225(2):211–238. doi:10.1006/jsvi.1999.2236

    Article  Google Scholar 

  • Hutcheson FV, Brooks TF (2004) Effects of angle of attack and velocity on trailing edge noise. In: 42th AIAA aerospace sciences meeting, Reno, AIAA-2004-1031, doi:10.2514/6.2004-1031

  • Jones LE, Sandberg RD (2012) Acoustic and hydrodynamic analysis of the flow around an aerofoil with trailing edge serrations. J Fluid Mech 706:295–322. doi:10.1017/jfm.2012.254

    Article  Google Scholar 

  • Lee BHK (2001) Self-sustained shock oscillations on airfoils at transonic speeds. Prog Aerosp Sci 37(2):147–196. doi:10.1016/S0376-0421(01)00003-3

    Article  Google Scholar 

  • Moreau DJ, Brooks LA, Doolan CJ (2012) On the noise reduction mechanism of a flat plate serrated trailing edge at low-to-moderate reynolds number. In: 18th AIAA/CEAS aeroacoustics conference (33rd AIAA aeroacoustics conference), 4–6 June 2012, Colorado Springs, CO, doi:10.2514/6.2012-2186

  • Nies JM, Olivier H (2013) Dependence of upstream moving pressure waves on the Mach number and the impact of trailing edge serrations. In: 62. Deutscher Luft- und Raumfahrtkongress, 10–12. Spetember

  • Nies JM, Olivier H (2014) Influence of trailing edge brushes on upstream moving pressure waves in transonic flow. In: 32nd AIAA applied aerodynamics conference, Atlanta, Georgia, pp 2014–3244

  • Oerlemans S, Fisher M, Maeder T, Kögler K (2009) Reduction of wind turbine noise using optimized airfoils and trailing-edge serrations. AIAA J 47(6):1470–1481. doi:10.2514/1.3888

    Article  Google Scholar 

  • Olsen W, Boldman D (1979) Trailing edge noise data with comparison to theory. In: 12th fluid and plasma dynamics conference, AIAA, Williamsburg, Virginia, July 23–25, AIAA 79–1524, doi:10.2514/6.1979-1524

  • Pierce AD (1981) Acoustics—an introduction to its physical principles and applications. McGraw-Hill Book Company, New York

    Google Scholar 

  • Pollock N (1972) The aerodynamical behavior of a two-dimensional aerofoil fitted with semi-circular and squared blunt bases at Mach numbers up to 1.2. Tech. rep., Department of Supply, Australian Defence Scientific Service, Aeronautical Research Laboratories

  • Reichel T, Zechner M, Olivier H (2003) Experiments in a transonic shock tube at subsonic mach and high Reynolds numbers. Notes Numer Mech Multidiscip Des 84:105–122. doi:10.1007/978-3-540-44866-2_6

    Article  Google Scholar 

  • Richter K (2010) Untersuchung zur Aerodynamik von Miniature Trailing-Edge Devices in transsonischen Strömungen. Dissertation, DLR Göttingen

  • Rodriguez O (1984) The circular cylinder in subsonic and transonic flow. AIAA J 22(12):1713–1718. doi:10.2514/3.8842

    Article  Google Scholar 

  • Rodriguez O (1991) Base drag reduction by control of the three-dimensional unsteady vortical structures. Exp Fluids 11:218–226. doi:10.1007/BF00192747

    Article  Google Scholar 

  • Schlichting H (1964) Grenzschicht-Theorie, 5th edn. Verlag G. Braun

  • Seiler F, Srulijes J (1984) Vortices and pressure waves at trailing edges. In: Proceedings of the 16th international congress on high-speed photography and photonics

  • Spee B (1966) Wave propagation in transonic flow past two-dimensional aerofoils. Tech. rep, National Lucht- en Riumtevaartlaboratorium

  • Srulijes J, Seiler F (1987) A study of upstream moving pressure waves induced by vortex separation. In: Grönig H (ed) Proceedings of the 16th international symposium on shock tubes and waves, Aachen, pp 621–628

  • Tanner M (1971) Experimental investigation of the drag of wings with a blunt trailing edge at transonic speeds. AGARD CP83 pp 8.1-8.6

  • Tijdeman H (1977) Investigation of the transonic flow around oscillating airfoils. Dissertation, Technische Hogeschool Delft

  • Voss R (1988) Über die Ausbreitung akustischer Störungen in transsonischen Strömungsfeldern von Tragflügeln. DFVLR Forschungsbericht, Institut für Aeroelastik, Göttingen

  • Zechner M (2002) Transsonische Profilumströmungen im Stoßrohr-Transschallkanal. Dissertation, RWTH Aachen University

Download references

Acknowledgments

This research was funded by the German Research Foundation within the project “Numerische und experimentelle Untersuchung zur Abschwächung stromauf laufender Druckwellen bei transsonischer Profilumströmung” (DFG OL 107/22). The use of computer resources provided by the Jülich Supercomputing Centre (JSC) is also gratefully acknowledged.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliane M. Nies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nies, J.M., Gageik, M.A., Klioutchnikov, I. et al. Investigation of wave phenomena on a blunt airfoil with straight and serrated trailing edges. Exp Fluids 56, 136 (2015). https://doi.org/10.1007/s00348-015-2009-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-015-2009-4

Keywords

Navigation