Skip to main content
Log in

A new experiment to measure shocked particle drag using multi-pulse particle image velocimetry and particle tracking

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

We demonstrate the measurement capabilities for a new horizontal shock tube facility designed to measure the displacements, velocities and accelerations of shock-accelerated particles just after shock passage. Eight-frame particle image accelerometry and particle tracking velocimetry accelerometry diagnostics are implemented, along with a shadowgraphy system for measuring the shock location during experiments. We demonstrate the driving conditions of the facility using a unique membraneless pneumatic driver and particle seeding system that can accommodate both solid and liquid particles in the carrier phase. Measurements of two types of solid particles show unsteady drag forces higher than those for steady drag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Adrian RJ, Westerweel J (2011) Particle image velocimetry. Cambridge University Press, New York

    Google Scholar 

  • Boiko VM, Kiselev VP, Kiselev SP, Papyrin AN, Poplavsky SV, Fomin VM (1997) Shock wave interaction with a cloud of particles. Shock Waves 7:275–285

    Article  MATH  Google Scholar 

  • Britan A, Elperin T, Igra O, Jiang P (1995) Acceleration of a sphere behind planar shock waves. Exp Fluids 20:84–90

    Article  Google Scholar 

  • Butler PB, Schmitt RG (1990) Shock propagation through a perfect gas entrained with a normal distribution of the particles. Powder Technol 63:229–240

    Article  Google Scholar 

  • Chojnicki K, Clarke AB, Phillips JC (2006) A shock-tube investigation of the dynamics of gas–particle mixtures: implications for explosive volcanic eruptions. Geophys Res Lett 33:1–5. doi:10.1029/2006GL026414

    Google Scholar 

  • Christensen KT, Adrian RJ (2002) Measurement of instantaneous eulerian acceleration fields by particle image accelerometry: method and accuracy. Exp Fluids 33:759–769

    Article  Google Scholar 

  • Clift R, Gauvin WH (1970) The motion of particles in turbulent gas streams. Pro Chem 1:14–28

    Google Scholar 

  • Elsinga GE, Van Oudheusden BW, Scarano F (2005) Evaluation of aero-optical distortion effects in piv. Exp Fluids 39:246–256

    Article  Google Scholar 

  • Ferrari S, Rossi L (2008) Particle tracking velocimetry and accelerometry (ptva) measurements applied to quais-two dimensional multi-scale flows. Exp Fluids 44:873–886

    Article  Google Scholar 

  • Geng JH, Groenig H (2000) Dust suspensions accelerated by shock waves. Exp Fluids 28:360–367

    Article  Google Scholar 

  • Gore R, Crowe C (1989) Effect of particle on size on modulating turbulent intensity. Int J Multiph Flow 15:279

    Article  Google Scholar 

  • Hjelmfelt AT, Mockros FL (1966) Motion of discrete particles in a turbulent fluid. Appl Sci Res 16:149–161

    Article  Google Scholar 

  • Igra O, Takayama K (1993) Shock tube study of the drag coefficient of a sphere in a non-stationary flow. Proc R Soc A 442:231–247

    Article  Google Scholar 

  • Jourdan G, Houas L, Igra O, Estivalezes JL, Devals C, Meshkov EE (2007) Drag coefficient of a sphere in a non-stationary flow: new results. Proc R Soc 463:3323–3345

    Article  Google Scholar 

  • Kulick JD, Fessler JR, Eaton JK (1994) Particle response to turbulence modification in fully developed channel flow. J Fluid Mech 277:109

    Article  Google Scholar 

  • Ling Y, Wagner JL, Beresh SJ, Kearney SP, Balachandar S (2012) Interaction of a planar shock wave with a dense particle curtain: modeling and experiments. Phys Fluids 24:1–30

    Article  Google Scholar 

  • Longhorn AL (1952) The unsteady, subsonic motion of a sphere in a compressible inviscid fluid. Q J Mech Appl Math 5:64–81

    Article  MATH  MathSciNet  Google Scholar 

  • Marble FE (1970) Dynamics of dusty gases. Annu Rev Fluid Mech 2:397–446

    Article  Google Scholar 

  • Maxey MR, Riley JJ (1983) Equation of motion for a small rigid sphere in a nonuniform flow. Phys Fluids 26:883–889

    Article  MATH  Google Scholar 

  • Miles JW (1951) On virtual mass and transient motion in subsonic compressible flow. Q J Mech Appl Math 4:388–400

    Article  MATH  MathSciNet  Google Scholar 

  • Parmar M, Haselbacher A, Balachandar S (2008) On the unsteady inviscid force on cylinders and spheres in subcritical compressible flow. Philos Trans R Soc A 366:2161–2175

    Article  MATH  Google Scholar 

  • Parmar M, Haselbacher A, Balachandar S (2009) Modeling of the unsteady force for shock–particle interaction. Shock Waves 19:317–329

    Article  MATH  Google Scholar 

  • Parmar M, Haselbacher A, Balachandar S (2010) Improved drag correlation for spheres and application to shock-tube experiments. AIAA J 48:1273–1276

    Article  Google Scholar 

  • Rudinger G (1970) Effective drag coefficient for gas–particle flow in shock tubes. ASME J Basic Eng 92:165–172

    Article  Google Scholar 

  • Saito T, Saba M, Sun M, Takayama K (2007) The effect of an unsteady drag force on the structure of a non-equilibrium region behind a shock wave in a gas–particle mixture. Shock Waves 17:255–262. doi:10.1007/s00193-007-0109-7

    Article  MATH  Google Scholar 

  • Sommerfeld M (1985) The unsteadiness of shock waves propagating through gas–particle mixtures. Exp Fluids 3:197–206

    Article  Google Scholar 

  • Sun M, Saito T, Takayama K, Tanno H (2004) Unsteady drag on a sphere by shock wave loading. Shock Waves. doi:10.1007/s00193-004-0235-4

  • Sun M, Saito T, Takayama K, Tanno H (2005) Unsteady drag on a sphere by shock wave loading. Shock Waves 14:3–9

    Article  MATH  Google Scholar 

  • Tanaka T, Eaton JK (2010) Sub-kolmogorov resolution particle image velocimetry measurements of particle-laden forced turbulence. J Fluid Mech 643:177–206. doi:10.1017/S0022112009992023

    Article  MATH  Google Scholar 

  • Tanno H, Itoh K, Saito T, Abe A, Takayama K (2003) Interaction of a shock with a sphere suspended in a vertical shock tube. Shock Waves 13:191–200

    Article  Google Scholar 

  • Wagner J, Beresh S, Kearney S, Pruett B, Wright E (2012) Shock tube investigation of quasi-steady drag in shock–particle interactions. Phys Fluids 24:123301

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam A. Martinez.

Additional information

Adam A. Martinez and Gregory C. Orlicz have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez, A.A., Orlicz, G.C. & Prestridge, K.P. A new experiment to measure shocked particle drag using multi-pulse particle image velocimetry and particle tracking. Exp Fluids 56, 1854 (2015). https://doi.org/10.1007/s00348-014-1854-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-014-1854-x

Keywords

Navigation