Skip to main content
Log in

Velocity field and parametric analysis of a subsonic, medium-Reynolds number cavity flow

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Cavity flows are a class of flows bounded by material structures, where a recirculation region is present, and they are found in many practical applications. In the present study, the interaction between a boundary layer and an open parallelepipedic cavity develops a Kelvin–Helmholtz-like instability coupled with the cavity recirculation. PIV measurements of the flow are carried out in two orthogonal planes inside the cavity, for different aspect ratios, incompressible flow conditions, and Reynolds numbers in the range 1,900–12,000. Mean velocity and second-order moments of velocity fluctuations reveal the flow morphology. For particular conditions, centrifugal instabilities appear that are induced by flow curvature due to wall confinement. The use of an identification criterion indicates the presence of pairs of counter-rotating vortices winded around the recirculation. A parametric analysis is conducted, and the inviscid Rayleigh discriminant provides the potentially unstable flow regions inside the cavity. Finally, a stability parameter considering the ratio between centrifugal destabilizing effects and stabilizing viscous effects is carried out and gives thresholds for the emergence of the centrifugal instability. The study draws to an end with a comparison with a well-documented lid-driven cavity flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  • Barbagallo A, Sipp D, Schmid PJ (2009) Closed-loop control of an open cavity flow using reduced-order models. J Fluid Mech 218:1–50

    Article  Google Scholar 

  • Barkley D, Gomes GM, Henderson RD (2002) Three-dimensional instability in flow over a backward-facing step. J Fluid Mech 473:167–190

    Article  MATH  MathSciNet  Google Scholar 

  • Basley J, Pastur LR, Lusseyran F, Faure TM, Delprat N (2011) Experimental investigation of global modes in an incompressible cavity flow using time-resolved PIV. Exp Fluids 50:905–918

    Article  Google Scholar 

  • Bippes H (1972) Experimentelle Untersuchung des laminar-turbulenten Umschlags an einer parallel angeströmten könkaven Wand, Heidel Akad Wiss Naturwiss Kl 3:103 (also NASA TM—75243, 1978)

  • Bottaro A, Luchini P (1999) Görtler vortices: are they amenable to local eigenvalue analysis? Eur J Mech B/Fluids 18:47–65

    Article  MATH  MathSciNet  Google Scholar 

  • Braun MJ, Choi FK, Zhou M (1993) The effects of a hydrostatic pocket aspect ratio, and its supply orifice position and attack angle on steady-state flow pattern, pressure and shear characteristics. J Tribol 115:678–685

    Article  Google Scholar 

  • Brès GA, Colonius T (2008) Three-dimensional instabilities in compressible flow over open cavities. J Fluid Mech 599:309–339

    Article  MATH  Google Scholar 

  • Buckholz RH (1986) The functional role of wing corrugation in living systems. J Fluids Eng 108:93–97

    Article  Google Scholar 

  • Chabni A (1997) Étude par méthodologie de type Simulation des Grosses Structures de la dynamique de l’interaction et des échanges entre une couche limite et une encoche, PhD thesis, Université Paris XI (in French)

  • Charwat AF, Roos JN, Dewey FC, Hitz JA (1961) An investigation of separated flows. Part 1: the pressure field. J Aero Sci 28:457–470

    Article  MATH  Google Scholar 

  • Chatellier L, Laumonier Y, Gervais Y (2004) Theoretical and experimental investigation of low Mach number turbulent cavity flows. Exp Fluids 36:728–740

    Article  Google Scholar 

  • Chicheportiche J, Merle X, Gloerfelt X, Robinet JC (2008) Direct numerical simulation and global stability analysis of three-dimensional instabilities in a lid-driven cavity. C R Méc 336(7):586–591

    Article  Google Scholar 

  • Citro V, Giannetti F, Brandt L, Luchini P (2014) Global and asymptotic stability analysis of open cavity flows, J Fluid Mech (under review)

  • Crow SC (1970) Stability theory for a pair of trailing vortices. AIAA J 8:2172–2179

    Article  Google Scholar 

  • de Vicente J, Basley J, Meseguer-Garrido F, Soria J, Theofilis V (2014) Three-dimensional instabilities over a rectangular open cavity: from linear stability analysis to experimentation. J Fluid Mech 748:189–220

    Article  Google Scholar 

  • Douay CL (2014) Étude expérimentale paramétrique des propriétés et transitions de l’écoulement intra-cavitaire en cavité ouverte et contrôle de l’écoulement, Ph. D. thesis, Université Pierre-et-Marie-Curie, Paris (in French)

  • Douay CL, Faure TM, Lusseyran F (2013) Stereoscopic PIV using optical flow: application to a cavity recirculation. Exp Fluids 54:1579, p 15

  • Drazin PG, Reid WH (1981) Hydrodynamic stability. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Fang LC, Nicolaou D, Cleaver JW (1999) Transient removal of a contaminated fluid from a cavity. Intl J Heat Fluid Flow 20:605–613

    Article  Google Scholar 

  • Faure T (2008) Dynamique des fluides appliquée. Applications à l’aérodynamique, Dunod (in French)

    Google Scholar 

  • Faure TM, Lusseyran F, Gougat P, Launay F (2006) Experimental investigation of the flow distribution inside a tubular heat exchanger. J Fluids Eng 128:1218–1227

    Article  Google Scholar 

  • Faure TM, Adrianos P, Lusseyran F, Pastur LR (2007) Visualizations of the flow inside an open cavity at medium range Reynolds numbers. Exp Fluids 42:169–184

    Article  Google Scholar 

  • Faure TM, Pastur LR, Lusseyran F, Fraigneau Y, Bisch D (2009) Three-dimensional centrifugal instabilities development inside a parallelepipedic open cavity of variable shape. Exp Fluids 47:395–410

    Article  Google Scholar 

  • Floryan JM, Saric WC (1982) Stability of Görtler vortices in boundary layers. AIAA J 20:316–324

    Article  MATH  MathSciNet  Google Scholar 

  • Forestier N, Jacquin L, Geffroy P (2003) The mixing layer over a deep cavity at high-subsonic speed. J Fluid Mech 475:101–145

    Article  MATH  Google Scholar 

  • Gloerfelt X (2009) Cavity noise, Von Kármán Institute Lecture Series, p 169

  • Gomez F, Gomez R, Theofilis V (2014) On three-dimensional global linear instability analysis of flows with standard aerodynamics codes. Aerosp Sci Technol 32:223–234

    Article  Google Scholar 

  • Graftieaux L, Michard M, Grosjean N (2001) Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows. Meas Sci Technol 12:1422–1429

    Article  Google Scholar 

  • Guermond JL, Migeon C, Pineau G, Quartapelle L (2002) Start-up flows in a three-dimensional rectangular driven cavity of aspect ratio 1:1:2 at Re = 1000. J Fluid Mech 45:169–199

    MathSciNet  Google Scholar 

  • Haigermoser C, Scarano F, Onorato M (2009) Investigation of the flow in a circular cavity using stereo and tomographic particle image velocimetry. Exp Fluids 46:517–526

    Article  Google Scholar 

  • Hall P (1982) Taylor–Görtler vortices in fully developed or boundary-layer flows: linear theory. J Fluid Mech 124:475–494

    Article  MATH  Google Scholar 

  • Hunt JCR, Wray AA, Moin P (1988) Eddies, stream and convergence zones in turbulent flows, Center for Turbulence Research Report CTR-S88: 193

  • Jeong J, Hussain F (1995) On the identification of a vortex. J Fluid Mech 285:69–94

    Article  MATH  MathSciNet  Google Scholar 

  • Kegerise MA, Spina EF, Garg GS, Cattafesta LN III (2004) Mode-switching and nonlinear effects in compressible flow over a cavity. Phys Fluids 16:678–687

    Article  Google Scholar 

  • Kuo CH, Huang SH (2001) Influence of flow path modification on oscillation of cavity shear layer. Exp Fluids 31:162–178

    Article  Google Scholar 

  • Larchevêque L, Sagaut P, Lê TH, Comte P (2004) Large-eddy simulation of a compressible flow in a three-dimensional open cavity at high Reynolds number. J Fluid Mech 516:265–301

    Article  MATH  Google Scholar 

  • Lee K, Liu JTC (1992) On the growth of mushroom-like structures in nonlinear spatially developing Görtler vortex flow. Phys Fluids A 4:95–103

    Article  MATH  Google Scholar 

  • Lin JC, Rockwell D (2001) Organized oscillations of initially turbulent flow past a cavity. AIAA J 39:1139–1151

    Article  Google Scholar 

  • Liou T, Liao C (1997) Study of pulsative flows in lateral aneurysm models on a straight parent vessel using particle tracking velocimetry. The first Pacific Symposium on Flow Visualization and Image Processing, Honolulu, 639–644

  • Luchini P, Bottaro A (2014) Adjoint equations in stability analysis. Annu Rev Fluid Mech 46(1):493–517

    Article  MathSciNet  Google Scholar 

  • Merle X, Alizard F, Robinet JC (2010) Finite difference methods for viscous incompressible global stability analysis. Comput Fluids 39:911–925

    Article  MATH  MathSciNet  Google Scholar 

  • Meseguer-Garrido F, de Vicente J, Valero E, Theofilis V (2011) Effect of aspect ratio on the three-dimensional global instability analysis of incompressible open cavity flows. 6th AIAA theoretical fluid mechanics conference, 27–30 June 2011, Honolulu, Hawaii, AIAA paper 2011-3605

  • Meseguer-Garrido F, de Vicente J, Valero E, Theofilis V (2014) On linear instability mechanisms in incompressible open cavity flow. J Fluid Mech 752:219–236

    Article  Google Scholar 

  • Michard M, Favelier T (2004) Développement d’un critère d’identification de structures tourbillonnaires adapté aux mesures de vitesse par PIV, 9ème Congrès Francophone de Vélocimétrie Laser, Brussels (Belgium), September 14–17 (in French)

  • Migeon C (2000) Contribution à l’analyse de l’écoulement tridimensionnel instable s’établissant à l’intérieur de cavités cylindriques, PhD thesis, Université de Poitiers (in French)

  • Migeon C (2002) Details on the start-up development of the Taylor–Görtler-like vortices inside a square-section lid-driven cavity for 1,000 ≤ Re ≤ 3,200. Exp Fluids 33:594–602

    Article  Google Scholar 

  • Migeon C, Pineau G, Texier A (2003) Three-dimensionality development inside standard parallelepipedic lid-driven cavities at Re = 1000. J Fluids Struct 17:717–738

    Article  Google Scholar 

  • Mutabazi I, Hegseth JJ, Andereck DA, Weisfreid JE (1990) Spatiotemporal pattern modulations in the Taylor–Dean system. Phys Rev Lett 64(15):1729–1733

    Article  Google Scholar 

  • Neary MD, Stephanoff KD (1987) Shear-layer-driven transition in rectangular cavity. Phys Fluids 30:2936–2946

    Article  Google Scholar 

  • Quénot GM (1992) The orthogonal algorithm for optical flow detection using dynamic programming. Proc IEEE ICASSP 3:249–252

    Google Scholar 

  • Rayleigh JS (1916) On the dynamics of evolving fluids. Sci Pap 6:447–453

    MathSciNet  Google Scholar 

  • Reulet P, Esteve MJ, Millan P, Riethmuller ML (2002) Experimental characterization of the flow within a transitional rectangular cavity. J Flow Vis Image Process 9:2–3

    Article  Google Scholar 

  • Rossiter JE (1964) Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds, RAE Technical Report 64037

  • Rowley CW, Colonius T, Basu AJ (2002) On self-sustained oscillations in two-dimensional compressible flow over rectangular cavities. J Fluid Mech 455:315–346

    Article  MATH  MathSciNet  Google Scholar 

  • Sarohia V (1977) Experimental investigation of oscillations in flows over shallow cavities. AIAA J 15:984–991

    Article  Google Scholar 

  • Savelsberg R, Castro I (2008) Vortex flows in open cylindrical-section cavities. Exp Fluids 46:485–497

    Article  Google Scholar 

  • Schlichting H (1960) Boundary layer theory. McGraw-Hill, New York

    MATH  Google Scholar 

  • Schmid PJ (2007) Nonmodal stability theory. Annu Rev Fluid Mech 39:129–162

    Article  Google Scholar 

  • Schrader LU, Brandt L, Zaki TA (2011) Receptivity, instability and breakdown of Görtler flow. J Fluid Mech 682:362–396

    Article  MATH  Google Scholar 

  • Siegmann-Hegerfeld T, Albensoeder S, Kuhlmann HC (2013) Three-dimensional flow in a lid-driven cavity with width-to-height ratio of 1.6. Exp Fluids 54:1526–1534

    Article  Google Scholar 

  • Sipp D (2012) Open-loop control of cavity oscillations with harmonic forcings. J Fluid Mech 708:439–468

    Article  MATH  MathSciNet  Google Scholar 

  • Sipp D, Jacquin L (2000) Three-dimensional centrifugal-type instabilities of two dimensional flows in rotating systems. Phys Fluids 12:1740–1748

    Article  MathSciNet  Google Scholar 

  • Sipp D, Lebedev A (2007) Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows. J Fluid Mech 593:333–358

    Article  MATH  Google Scholar 

  • Sipp D, Marquet O, Meliga P, Barbagallo A (2010) Dynamics and control of global instabilities in open-flows: a linearized approach. Appl Mech Rev 63:030801, p 26

  • Swearingen JD, Blackwelder RF (1987) The growth and breakdown of streamwise vortices in the presence of a wall. J Fluid Mech 182:255–290

    Article  Google Scholar 

  • Tani I (1962) Production of longitudinal vortices in the boundary layer along a concave wall. J Geophys Res 67:3075–3080

    Article  Google Scholar 

  • Tritton DJ (1988) Physical fluid dynamics, 2nd edn. Oxford Science, Oxford

    Google Scholar 

  • Winoto SH, Crane RI (1980) Vortex structure in laminar boundary layers on a concave wall. Intl J Heat Fluid Flow 2:221–231

    Article  Google Scholar 

  • Yamouni S, Sipp D, Jacquin L (2013) Interaction between feedback aeroacoustic and acoustic resonance mechanisms in a cavity flow: a global stability analysis. J Fluid Mech 717:134–165

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges Vincent Bourdin, Vincent Gautier, and Yves Maire for their technical assistance on the experimental facility and wish to thank François Lusseyran, Luc Pastur, and Yann Fraigneau for fruitful discussions during the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry M. Faure.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faure, T.M. Velocity field and parametric analysis of a subsonic, medium-Reynolds number cavity flow. Exp Fluids 55, 1822 (2014). https://doi.org/10.1007/s00348-014-1822-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-014-1822-5

Keywords

Navigation