Skip to main content
Log in

Stereo particle image velocimetry measurements of perpendicular blade–vortex interaction over an oscillating airfoil

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The aerodynamic interaction of a stream-wise vortex impacting on a NACA 23012 oscillating airfoil was investigated using stereo particle image velocimetry. The experimental rig enabled the study of the aerodynamic effects due to the blade pitching motion in the interaction with the vortex. The experimental study focused on the light dynamic stall regime, which represents a typical condition of the retreating blade of a helicopter in forward flight. Particle image velocimetry was applied to a measurement volume close to the airfoil upper surface in order to obtain the three-dimensional interacting flow field. In particular, the experimental results show that during the airfoil downstroke motion, the vortex impact triggers the stall of the local blade section, indicating that detrimental effects on the blade performance can be introduced by perpendicular vortex interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Conlisk A (2001) Modern helicopter rotor aerodynamics. Prog Aerosp Sci 37:419–476

    Article  Google Scholar 

  • De Gregorio F, Pengel K, Kindler K (2012) A comprehensive PIV measurement campaign on a fully equipped helicopter model. Exp Fluids 53:37–49

    Article  Google Scholar 

  • Devenport W, Rife M, Liapis S, Follin G (1996) The structure and development of a wing-tip vortex. J Fluid Mech 312:67–106

    Article  MathSciNet  Google Scholar 

  • Gibertini G, Mencarelli A, Zanotti A (2014) Oscillating aerofoil and perpendicular vortex interaction. Proc Inst Mech Eng G J Aerosp Eng 228:846–858

    Article  Google Scholar 

  • Green RB, Doolan C, Cannon R (2000) Measurements of the orthogonal blade–vortex interaction using a particle image velocimetry technique. Exp Fluids 29:369–379

    Article  Google Scholar 

  • Green RB, Coton FN, Early JM (2006) On the three-dimensional nature of the orthogonal blade–vortex interaction. Exp Fluids 41:749–761

    Article  Google Scholar 

  • Glegg SAL, Devenport WJ, Wittmer KS, Pope DS (1999) Broadband helicopter noise generated by blade wake interactions. J Am Helicopter Soc 44:293–301

    Article  Google Scholar 

  • Ham N (1975) Some conclusions from an investigation of blade–vortex interaction. J Am Helicopter Soc 4:26–31

    Article  Google Scholar 

  • Horner M, Galbraith R, Coton FN, Stewart J, Grant I (1996) Examination of vortex deformation during blade–vortex interaction. AIAA J 34:1188–1194

    Article  Google Scholar 

  • Hunt JCR, Wray A, Moin P (1988) Eddies, stream, and convergence zones in turbulent flows. Center for Turbulence Research Report CTR-S88

  • Iungo G, Skinner P, Buresti G (2009) Correction of wandering smoothing effects on static measurements of a wing-tip vortex. Exp Fluids 46:435–452

    Article  Google Scholar 

  • Labview, User Manual, National Instruments, www.ni.com

  • Leishman JG (2000) Principles of helicopter aerodynamics. Cambridge University Press, Cambridge

    Google Scholar 

  • Leishman JG (1990) Dynamic stall experiments on the NACA 23012 airfoil. Exp Fluids 9:49–58

    Article  Google Scholar 

  • McCroskey WJ (1981) The phenomenon of dynamic stall, NASA TM 81264

  • PIVview 2C/3C, user manual, PIVTEC, www.pivtec.com

  • Raffel M, Willert C, Wereley S, Kompenhans J (2007) Particle image velocimetry—a practical guide. Springer, Berlin

    Google Scholar 

  • Raffel M, De Gregorio F, De Groot K, Schneider O, Sheng W, Gibertini G, Seraudie A (2011) On the generation of a helicopter aerodynamic database. Aeronaut J 115:103–112

    Google Scholar 

  • Rife MC, Devenport WJ (1992) Flow visualizations of perpendicular blade vortex interactions. NASA CR 192725

  • Rival D, Manejev R, Tropea C (2010) Measurement of parallel blade–vortex interaction at low Reynolds numbers. Exp Fluids 49:89–99

    Article  Google Scholar 

  • Rockwell D (1998) Vortex–body interaction. Annu Rev Fluid Mech 30:199–229

    Article  MathSciNet  Google Scholar 

  • Schmitz F, Yu Y (1983) Helicopter impulsive noise: theoretical and experimental status. NASA TM 84390, Bell Helicopter Textron

  • Shockey G, Williamson J, Cox C (1997) AH-1G helicopter aerodynamic and structural load survey, USAAMRDL TR 76–39, Bell Helicopter Textron

  • Theodorsen T (1932) On the theory of wing sections with particular reference to the lift distribution, NACA TR 383

  • Wittmer KS, Devenport WJ, Rife MC, Glegg SAL (1995) Perpendicular blade vortex interaction. AIAA J 33:1667–1674

    Article  Google Scholar 

  • Wittmer KS, Devenport WJ (1999) Effects of perpendicular blade–vortex interaction, part 1: turbulence structure and development. AIAA J 37:805–812

    Article  Google Scholar 

  • Yu Y (2000) Rotor blade–vortex interaction noise. Prog Aerosp Sci 36:97–115

    Article  Google Scholar 

  • Zanotti A, Auteri F, Campanardi G, Gibertini G (2011) An experimental set up for the study of the retreating blade dynamic stall. 37th European Rotorcraft Forum, Gallarate (VA), Italy, 13–15 Sept

  • Zanotti A (2012) Retreating blade dynamic stall, Ph.D. thesis, Politecnico di Milano

  • Zanotti A, Gibertini G (2013) Experimental investigation of the dynamic stall phenomenon on a NACA 23012 oscillating aerofoil. Proc Inst Mech Eng G J Aerosp Eng 227:1375–1388

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zanotti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zanotti, A., Ermacora, M., Campanardi, G. et al. Stereo particle image velocimetry measurements of perpendicular blade–vortex interaction over an oscillating airfoil. Exp Fluids 55, 1811 (2014). https://doi.org/10.1007/s00348-014-1811-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-014-1811-8

Keywords

Navigation