Skip to main content

Advertisement

Log in

Investigation of three-dimensional dynamic stall on an airfoil using fast-response pressure-sensitive paint

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Dynamic stall on a pitching OA209 airfoil in a wind tunnel is investigated at Mach 0.3 and 0.5 using high-speed pressure-sensitive paint (PSP) and pressure measurements. At Mach 0.3, the dynamic stall vortex was observed to propagate faster at the airfoil midline than at the wind-tunnel wall, resulting in a “bowed” vortex shape. At Mach 0.5, shock-induced stall was observed, with initial separation under the shock foot and subsequent expansion of the separated region upstream, downstream and along the breadth of the airfoil. No dynamic stall vortex could be observed at Mach 0.5. The investigation of flow control by blowing showed the potential advantages of PSP over pressure transducers for a complex three-dimensional flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

\(A_{\rm Ref}\) :

Reference area for \(C_{\rm L}, C_{\rm D}, C_{\rm M} \; (=0.3\,\hbox {m}^2)\)

\(\alpha \) :

Angle of attack (\(^\circ \))

\(\beta \) :

Vortex rotation angle (\(^\circ \))

\(b\) :

Airfoil model breadth (\(b=0.997\) m)

\(c\) :

Airfoil model (\(c=0.300\) m)

\(C_{\rm L}\) :

Lift coefficient

\(C_{\rm M}\) :

Pitching moment coefficient

\(C_{\rm P}\) :

Pressure coefficient

\(C_{\rm P-crit}\) :

Critical pressure coefficient

\(C_{{\rm P}_0}\) :

\(C_{\rm P}\) at minimum angle of attack

\(C_{\mu }\) :

Momentum ratio jets/freestream: \(C_{\mu }=\frac{2}{cL_{\rm act}}\frac{\dot{m}_{\rm m}v_{\rm j}}{\rho _{\infty }v^2_{\infty }}\)

\(f\) :

Frequency (Hz)

\(k\) :

Reduced frequency: \(k=\pi fc/v_{\infty }\)

\(L_{\rm act}\) :

Breadth of model with actuation (m)

\(M\) :

Mach number

\(\dot{m}_{\rm m}\) :

Mass flux for the model (kg/s)

\(Re\) :

Reynolds number based on \(c\)

\(\rho _{\infty }\) :

Freestream flow density (\(\hbox {kg/m}^3\))

\(s\) :

Jet spacing in \(y\)-direction (m)

\(d\) :

Jet diameter (\(d=0.003\) m)

\(T_0\) :

Total temperature of the jet air (K)

\(T_{\infty }\) :

Freestream temperature (K)

\(v_{\rm j}, v_{\infty }\) :

Velocities: jet, freestream (m/s)

\(x, y, z\) :

Coordinates: chord, breadth, upward (m)

References

  • Costes M, Richez F, Le Pape A, Gavériaux R (2011) Numerical investigation of three-dimensional effects during dynamic stall. In: 37th European Rotorcraft forum, Gallarate Varese, Italy

  • Gardner AD, Richter K (2013a) Effect of the model-sidewall connection for a static airfoil experiment. J Aircr 50(2):677–680. doi:10.2514/1.C032011

    Article  Google Scholar 

  • Gardner AD, Richter K (2013b) Influence of rotation on dynamic stall. J Am Helicopter Soc 58(3). doi:10.4050/JAHS.58.032001

  • Gardner AD, Richter K, Mai H, Neuhaus D (2013) Experimental investigation of air jets for the control of compressible dynamic stall. J Am Helicopter Soc 58(4). doi:10.4050/JAHS.58.042001

  • Gardner AD, Richter K, Mai H, Neuhaus D (2014) Experimental investigation of air jets to control shock-induced dynamic stall. J Am Helicopter Soc 59(2). doi:10.4050/JAHS.59.02200

  • Gregory JW, Sakaue H, Liu T, Sullivan JP (2014) Fast pressure-sensitive paint for flow and acoustic diagnostics. Annu Rev Fluid Mech 46:303–330. doi:10.1146/annurev-fluid-010313-141304

    Article  Google Scholar 

  • Hinton SH (1957) Application of boundary layer control to rotor blades. J Am Helicopter Soc 2(2). doi:10.4050/JAHS.2.36

  • Juliano TJ, Disotell KJ, Gregory JW, Crafton J, Fonov S (2012) Motion-deblurred, fast-response pressure-sensitive paint on a rotor in forward flight. Meas Sci Technol 23. doi:10.1088/0957-0233/23/4/045303

  • Kaufmann K, Costes M, Richez F, Gardner AD, Le Pape A (2014) Numerical investigation of three-dimensional dynamic stall on an oscillating finite wing. In: American Helicopter society 70th annual forum, Montréal, Québec

  • Klein C, Sachs WE, Henne U, Borbye J (2010) Determination of transfer function of pressure-sensitive paint. In: AIAA 2010-0309, 48th AIAA aerospace sciences meeting, Exhibit, Orlando, FL

  • Klein A, Lutz Th, Kramer E, Richter K, Gardner AD, Altmikus ARM (2012) Numerical comparison of dynamic stall for two-dimensional airfoils and an airfoil model in the DNW-TWG. J Am Helicopter Soc 57(4). doi:10.4050/JAHS.57.042007

  • Le Pape A, Pailhas G, David F, Deluc J-M (2007) Extensive wind tunnel measurements of dynamic stall phenomenon for the OA209 airfoil including 3D effects. In: 33rd European Rotorcraft forum, Kazan, Russia

  • Lorber PF (1993) Tip vortex, stall vortex, and separation observations on pitching three- dimensional wings. In: AIAA 93-2972, AIAA 24th fluid dynamics conference, Orlando, FL, July 6–9, 1993. doi:10.2514/6.1993-2972

  • Lorber PF, Carta FO, Covino AF Jr (1992) An oscillating three-dimensional wing experiment: compressibility, sweep, rate, waveform, and geometry effects on unsteady separation and dynamic stall. UTRO Report R92-958325-6

  • McCroskey WJ, McAlister KW, Carr LW, Pucci SL (1982) An experimental study of dynamic stall on advanced airfoil sections Volume 1: summary of the experiment, NACA-TM 84245

  • Neuhaus D (2006) Magnetisch betätigbares Ventil. Deutsches Patent DE 10 2005 035 878 (31.8.2006)

  • Piziali RA (1994) 2-D and 3-D oscillating wing aerodynamics for a range of angles of attack including stall. NASA Technical Memorandum 4632

  • Richter K, Le Pape A, Knopp T, Costes M, Gleize V, Gardner AD (2011) Improved two-dimensional dynamic stall prediction with structured and hybrid numerical methods. J Am Helicopter Soc 56(4). doi:10.4050/JAHS.56.042007

  • Spentzos A, Barakos G, Badcock K, Richards B, Wernert P, Schreck S, Raffel M (2005) Investigation of three-dimensional dynamic stall using computational fluid dynamics. AIAA J 43(5):1023–1033. doi:10.2514/1.8830

    Article  Google Scholar 

  • Thibert JJ, Gallot J (1981) Advanced research on helicopter blade airfoils. Vertica 5(3):279–300

    Google Scholar 

  • Visbal M, Yilmaz TO, Rockwell D (2013) Three-dimensional vortex formation on a heaving low-aspect-ratio wing: Computations and experiments. J Fluids Struct 38:58–76. doi:10.1016/j.jfluidstructs.2012.12.005

    Article  Google Scholar 

  • Wong OD, Watkins NA, Goodman KZ, Crafton J, Forlines A, Goss L, Gregory JW, Juliano TJ (2012) Blade tip pressure measurements using pressure sensitive paint. In: American helicopter society 68th annual forum, Fort Worth, TX

Download references

Acknowledgments

This work was financed by the DLR projects “STELAR” and “iPSP2”. The assistance of the technical and scientific staff at the German-Dutch wind-tunnel association, the DLR institute of aeroelasticity, the DLR institute of aerodynamics and flow technology and the DLR workshops is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Gardner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gardner, A.D., Klein, C., Sachs, W.E. et al. Investigation of three-dimensional dynamic stall on an airfoil using fast-response pressure-sensitive paint. Exp Fluids 55, 1807 (2014). https://doi.org/10.1007/s00348-014-1807-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-014-1807-4

Keywords

Navigation