Skip to main content

UV-mediated coalescence and mixing of inkjet printed drops

Abstract

In this study, we experimentally investigated the material flows of coloured dyes in coalescing small inkjet printed droplets of different volume ratios. With two differently coloured dyes, one in each droplet, we were able to distinguish the time-resolved contributions in dye transport across the coalescence bridge due to convection and diffusion. Droplets with differently coloured dyes were inkjet printed onto a glass substrate at a sufficiently large pitch such that they do not touch each other. Under UV exposure, the wetting of the substrate improves, causing the droplets to coalesce. Filmed at 50 fps, the coalescence and mixing of the droplets of volume ratios 1:1, 2:1 and 4:1 was followed. For equally sized drops, the mixing of the dyes shows good agreement with a 1D approximation of Fick’s second law along the central axes of the coalescing droplets with a diffusion coefficient D = 2 × 10−9 m2 s−1. For unequally sized droplets, convective flows from the small to the large droplet were demonstrated. The convective flows increase in size with increasing volume ratio, but only enter the droplet over a small distance. Complete mixing of the dyes in the unequally sized droplets is only reached after a long period and is diffusion controlled. At the initial moment of coalescence of unequally sized droplets, a small convective flow is observed from the large into the small droplets. Further investigation in this phenomenon is recommended.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Aarts D, Lekkerkerker HNW (2008) Droplet coalescence: drainage, film rupture and neck growth in ultralow interfacial tension systems. J Fluid Mech 606:275–294

    Article  MATH  Google Scholar 

  • Andrieu C, Beysens DA, Nikolayev VS, Pomeau Y (2002) Coalescence of sessile drops. J Fluid Mech 453:427–438. doi:10.1017/S0022112001007121

    Article  MATH  MathSciNet  Google Scholar 

  • Anilkumar AV, Lee CP, Wang TG (1991) Surface-tension-induced mixing following coalescence of initially stationary drops. Phys Fluids A 3(11):2587–2591

    Article  Google Scholar 

  • Batchelor GK (2000) An introduction to fluid dynamics. Cambridge university press, Cambridge

    Book  Google Scholar 

  • Castrejón-Pita J, Betton E, Kubiak K, Wilson M, Hutchings I (2011) The dynamics of the impact and coalescence of droplets on a solid surface. Biomicrofluidics 5(1):014112

    Article  Google Scholar 

  • Castrejón-Pita J, Kubiak K, Castrejón-Pita A, Wilson M, Hutchings I (2013) Mixing and internal dynamics of droplets impacting and coalescing on a solid surface. Phys Rev E 88(2):023023

    Article  Google Scholar 

  • De Gennes P-G, Brochard-Wyart F, Quéré D (2004) Capillarity and wetting phenomena: drops, bubbles, pearls, waves. Springer, Berlin

    Book  Google Scholar 

  • Duchemin L, Eggers J, Josserand C (2003) Inviscid coalescence of drops. J Fluid Mech 487(1):167–178

    Article  MATH  Google Scholar 

  • Eddi A, Winkels K, Snoeijer J (2013) How geometry determines the coalescence of low-viscosity drops. arXiv:1307.7475

  • Eggers J, Lister JR, Stone HA (1999) Coalescence of liquid drops. J Fluid Mech 401:293–310

    Article  MATH  MathSciNet  Google Scholar 

  • Eral HB, ’t Mannetje DJCM, Oh JM (2012) Contact angle hysteresis: a review of fundamentals and applications. Colloid Polym Sci 291(2):247–260. doi:10.1007/s00396-012-2796-6

    Article  Google Scholar 

  • Fathi S, Dickens P (2013) Challenges in drop-on-drop deposition of reactive molten nylon materials for additive manufacturing. J Mater Process Technol 213(1):84–93. doi:10.1016/j.jmatprotec.2012.08.006

    Article  Google Scholar 

  • Fick A (1855) V. On liquid diffusion. Lond Edinb Dublin Philos Mag J Sci 10(63):30–39

    Google Scholar 

  • Gelfgat AY, Yarin AL, Bar-Yoseph PZ (2003) Dean vortices-induced enhancement of mass transfer through an interface separating two immiscible liquids. Phys Fluids (1994-present) 15(2):330–347. doi:10.1063/1.1532732

    Article  MathSciNet  Google Scholar 

  • Jun N, Ming X, Yong H (2009) Research progress in UV curing coatings. Paint & coatings industry: p 12

  • Laplace PS (1805) Traite de Mechanique Celeste vol 4 supplements au Livre X. Gauthier-Villars, Paris

    Google Scholar 

  • Lee MW, Kang DK, Yoon SS, Yarin AL (2012) Coalescence of two drops on partially wettable substrates. Langmuir 28(8):3791–3798. doi:10.1021/la204867c

    Article  Google Scholar 

  • Liberski AR, Delaney JT Jr, Schubert US (2010) “One cell-one well”: a new approach to inkjet printing single cell microarrays. ACS Comb Sci 13(2):190–195

    Article  Google Scholar 

  • Menchaca-Rocha A, Huidobro F, Martinez-Davalos A, Michaelian K, Perez A, Rodriguez V, CÂRjan N (1997) Coalescence and fragmentation of colliding mercury drops. J Fluid Mech 346:291–318

    Article  Google Scholar 

  • Mingming W, Cubaud T, Chih-Ming H (2004) Scaling law in liquid drop coalescence driven by surface tension. Phys Fluids 16(7):L51–L54

    Article  Google Scholar 

  • Poulis J, Cool J, Logtenberg E (1993) UV/ozone cleaning, a convenient alternative for high quality bonding preparation. Int J Adhes Adhes 13(2):89–96

    Article  Google Scholar 

  • Ristenpart WD, McCalla P, Roy R, Stone H (2006) Coalescence of spreading droplets on a wettable substrate. Phys Rev Lett 97(6):64501

    Article  Google Scholar 

  • Smith PJ, Morrin A (2012) Reactive inkjet printing. J Mater Chem 22(22):10965–10970

    Article  Google Scholar 

  • van Oosten CL, Bastiaansen CW, Broer DJ (2009) Printed artificial cilia from liquid-crystal network actuators modularly driven by light. Nat Mater 8(8):677–682

    Article  Google Scholar 

  • Verdier C, Brizard M (2002) Understanding droplet coalescence and its use to estimate interfacial tension. Rheol Acta 41(6):514–523

    Article  Google Scholar 

  • Vig J, LeBus J (1976) UV/ozone cleaning of surfaces. IEEE Trans Parts Hybrids Packag 12(4):365–370

    Article  Google Scholar 

  • Yang X, Chhasatia VH, Shah J, Sun Y (2012) Coalescence, evaporation and particle deposition of consecutively printed colloidal drops. Soft Matter 8(35):9205–9213. doi:10.1039/C2SM25906K

    Article  Google Scholar 

  • Young T (1805) An essay on the cohesion of fluids. Philos Trans R Soc Lond 95:65–87. doi:10.1098/rstl.1805.0005

    Article  Google Scholar 

  • Zahedi S (2011) Numerical methods for fluid interface problems. Umeå University, Umeå

    Google Scholar 

Download references

Acknowledgments

We would like to thank Renee Verkuijlen, Max Beving, Jasper Nab and Peter Ketelaars of Fontys University for their comments and contributions to the experimental work. Furthermore, we would like to thank the ‘Stichting Innovatie Alliantie’ for funding of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. A. van Dongen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

van Dongen, M.H.A., van Loon, A., Vrancken, R.J. et al. UV-mediated coalescence and mixing of inkjet printed drops. Exp Fluids 55, 1744 (2014). https://doi.org/10.1007/s00348-014-1744-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-014-1744-2

Keywords

  • Contact Angle
  • Particle Image Velocimetry
  • Convective Flow
  • Small Droplet
  • Inkjet Printing