Skip to main content

Measurement of atmospheric boundary layer based on super-large-scale particle image velocimetry using natural snowfall

Abstract

We present an implementation of super-large-scale particle image velocimetry (SLPIV) to characterize spatially the turbulent atmospheric boundary layer using natural snowfall as flow tracers. The SLPIV technique achieves a measurement area of ~22 m × 52 m, up to 56 m above the ground, with a spatial resolution of ~0.34 m. The traceability of snow particles is estimated based on their settling velocity obtained from the wall-normal component of SLPIV velocity measurements. The results are validated using coincident measurements from sonic anemometers on a meteorological tower situated in close proximity to the SLPIV sampling area. A contrast of the mean velocity and the streamwise Reynolds stress component obtained from the two techniques shows less than 3 and 12 % difference, respectively. Additionally, the turbulent energy spectra measured by SLPIV show a similar inertial subrange and trends when compared to those measured by the sonic anemometers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Adrian RJ (1991) Particle-imaging techniques for experimental fluid mechanics. Ann Rev Fluid Mech 23:261–304

    Article  Google Scholar 

  • Adrian RJ (2005) Twenty years of particle image velocimetry. Exp Fluids 39:159–169

    Article  Google Scholar 

  • Adrian RJ, Westerweel J (2011) Particle image velocimetry. Cambridge Univ. Press, Cambridge

    Google Scholar 

  • Adrian RJ, Meinhart CD, Tomkins CD (2000) Vortex organization in the outer region of the turbulent boundary layer. J Fluid Mech 422:1–54

    Article  MATH  MathSciNet  Google Scholar 

  • Aitken ML, Rhodes ME, Lundquist JK (2012) Performance of a wind-profiling lidar in the region of wind turbine rotor disks. J Atmos Ocean Technol 29:347–355

    Article  Google Scholar 

  • Aydin K, Singh J (2004) Cloud ice crystal classification using a 95-GHz polarimetric radar. J Atmos Ocean Technol 21:1679–1688

    Article  Google Scholar 

  • Barthelmie RJ, Larsen GC, Frandsen ST et al (2006) Comparison of wake model simulations with offshore wind turbine wake profiles measured by sodar. J Atmos Ocean Technol 23:888–901

    Article  Google Scholar 

  • Barthelmie RJ, Hansen K, Frandsen ST et al (2009) Modelling and measuring flow and wind turbine wakes in large wind farms offshore. Wind Energy 12:431–444

    Article  Google Scholar 

  • Bosbach J, Kühn M, Wagner C (2009) Large scale particle image velocimetry with helium filled soap bubbles. Exp Fluids 46:539–547

    Article  Google Scholar 

  • Brandes E, Ikeda K, Zhang G et al (2007) A statistical and physical description of hydrometeor distributions in Colorado snowstorms using a video disdrometer. J Appl Meteorol Climatol 46:634–650

    Article  Google Scholar 

  • Clifton A, Manes C, Rüedi J et al (2008) On shear-driven ventilation of snow. Bound Layer Meteorol 126:249–261

    Article  Google Scholar 

  • Crowe CT, Schwarzkopf JD, Sommerfeld M et al (1998) Multiphase flows with droplets and particles. CRC Press, Boca Raton

    Google Scholar 

  • Genthon C, Town MS, Six D et al (2010) Meteorological atmospheric boundary layer measurements and ECMWF analyses during summer at Dome C, Antarctica. J Geophys Res: Atmos 115:D05104

    Google Scholar 

  • Handorf D, Foken T, Kottmeier C (1999) The stable atmospheric boundary layer over an Antarctic ice sheet. Bound Layer Meteor 91:165–189

    Article  Google Scholar 

  • Hanesch M (1999) Fall velocity and shape of snowflakes. Dissertation, Swiss Federal Institute of Technology, Zürich

  • Hickson P, Carlberg R, Gagne R et al (2010) Boundary layer seeing measurements in the Canadian High Arctic. Proc SPIE 77331R:1–11

    Google Scholar 

  • Hobbs P, Chang S, Locatelli J (1974) The dimensions and aggregation of ice crystals in natural clouds. J Geophys Res 79:2199–2206

    Article  Google Scholar 

  • Hong J, Katz J, Schultz MP (2011) Near-wall turbulence statistics and flow structures over three-dimensional roughness in a turbulent channel flow. J Fluid Mech 667:1–37

    Article  MATH  Google Scholar 

  • Hosler C, Jensen D, Goldshlak L (1957) On the aggregation of ice crystals to form snow. J Atmos Sci 14:415–420

    Google Scholar 

  • Huang H, Dabiri D, Gharib M (1997) On errors of digital particle image velocimetry. Meas Sci Technol 8:1427

    Article  Google Scholar 

  • Hutchins N, Chauhan K, Marusic I et al (2012) Towards reconciling the large-scale structure of turbulent boundary layers in the atmosphere and laboratory. Bound Layer Meteorol 145:273–306

    Article  Google Scholar 

  • Jiménez J (2004) Turbulent flows over rough walls. Annu Rev Fluid Mech 36:173–196

    Article  Google Scholar 

  • Jiusto JE, Bosworth GE (1971) Fall velocity of snowflakes. J Appl Meteorol 10:1352–1354

    Article  Google Scholar 

  • Kaempfer T, Schneebeli M (2007) Observation of isothermal metamorphism of new snow and interpretation as a sintering process. J Geophys Res: Atmos 112:D24101

    Article  Google Scholar 

  • Keane RD, Adrian RJ (1993) Theory of cross-correlation analysis of PIV images. In: Nieuwstadt FTM (ed) Flow visualization and image analysis. Kluwer Academic Publishers, Dordrecht, pp 1–25

    Chapter  Google Scholar 

  • Langleben MP (1954) The terminal velocity of snowflakes. Q J R Meteorol Soc 80:174–181

    Article  Google Scholar 

  • Lavoie P, Avallone G, De Gregorio F et al (2007) Spatial resolution of PIV for the measurement of turbulence. Exp Fluids 43:39–51

    Article  Google Scholar 

  • Libbrecht KG (2005) The physics of snow crystals. Rep Prog Phys 68:855

    Article  Google Scholar 

  • Maahn M, Kollias P (2012) Improved micro rain radar snow measurements using Doppler spectra post-processing. Atmos Meas Tech 5:2661–2673

    Article  Google Scholar 

  • Manes C, Guala M, Egli L et al (2008) Statistical property of fresh snow roughness. Water Resour Res 44:W11407

    Article  Google Scholar 

  • Matrosov SY (1993) Possibilities of cirrus particle sizing from dual-frequency radar measurements. J Geophys Res: Atmos 98:20675–20683

    Article  Google Scholar 

  • Matrosov SY, Heymsfield AJ, Wang Z (2005) Dual-frequency radar ratio of nonspherical atmospheric hydrometeors. Geophys Res Lett 32:L13816

    Article  Google Scholar 

  • Melling A (1997) Tracer particles and seeding for particle image velocimetry. Meas Sci Technol 8:1406–1416

    Article  Google Scholar 

  • Metzger M, McKeon B, Holmes H (2007) The near-neutral atmospheric surface layer: turbulence and non-stationarity. Philos Trans R Soc Lond Ser A 365:859–876

    Article  MATH  Google Scholar 

  • Mitchell DL, Heymsfield AJ (2005) Refinements in the treatment of ice particle terminal velocities, highlighting aggregates. J Atmos Sci 62:1637–1644

    Article  Google Scholar 

  • Morris SC, Stolpa SR, Slaboch PE et al (2007) Near-surface particle image velocimetry measurements in a transitionally rough-wall atmospheric boundary layer. J Fluid Mech 580:319–338

    Article  MATH  Google Scholar 

  • Musial W, Butterfield S, McNiff B (2007) Improving wind turbine gearbox reliability. In: Proceedings of the European wind energy conference NREL CP-50041548

  • Nakiboğlu G, Gorlé C, Horváth I et al (2009) Stack gas dispersion measurements with large scale-PIV, aspiration probes and light scattering techniques and comparison with CFD. Atmos Environ 43:3396–3406

    Article  Google Scholar 

  • Raffel M, Willert CE, Wereley ST et al (2007) Particle image velocimetry: a practical guide, 2nd edn. Springer, Berlin

    Google Scholar 

  • Raupach M, Antonia R, Rajagopalan S (1991) Rough-wall turbulent boundary layers. Appl Mech Rev 44:1–25

    Article  Google Scholar 

  • Stanislas M, Okamoto K, Kähler CJ, Westerweel J, Scarano F (2008) Main results of the third international PIV challenge. Exp Fluids 45:27–71

    Article  Google Scholar 

  • Van Hout R, Zhu W, Luznik L et al (2007) PIV measurements in the atmospheric boundary layer within and above a mature corn canopy. Part I: statistics and energy flux. J Atmos Sci 64:2805–2824

    Article  Google Scholar 

  • Vanderwende BJ, Lundquist JK (2012) The modification of wind turbine performance by statistically distinct atmospheric regimes. Environ Res Lett 7:034035

    Article  Google Scholar 

  • Whale J, Anderson CG, Bareiss R et al (2000) An experimental and numerical study of the vortex structure in the wake of a wind turbine. J Wind Eng Ind Aerodyn 84:1–21

    Article  Google Scholar 

  • White AB, Gottas DJ, Strem ET et al (2002) An automated brightband height detection algorithm for use with Doppler radar spectral moments. J Atmos Ocean Technol 19:687–697

    Article  Google Scholar 

  • Wilson BM, Smith BL (2013) Uncertainty on PIV mean and fluctuating velocity due to bias and random errors. Meas Sci Technol 24:035302

    Article  Google Scholar 

  • Zhang W, Wang Y, Lee SJ (2008) Simultaneous PIV and PTV measurements of wind and sand particle velocities. Exp Fluids 45:241–256

    Article  Google Scholar 

  • Zilitinkevich S, Baklanov A, Rost J et al (2002) Diagnostic and prognostic equations for the depth of the stably stratified Ekman boundary layer. Q J R Meteorol Soc 128:25–46

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by US Department of Energy (grant No: DE–EE0002980) and the resources provided by the University of Minnesota College of Science and Engineering, Department of Mechanical Engineering and St. Anthony Falls Laboratory as part of the start-up package of Jiarong Hong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Hong.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Toloui, M., Riley, S., Hong, J. et al. Measurement of atmospheric boundary layer based on super-large-scale particle image velocimetry using natural snowfall. Exp Fluids 55, 1737 (2014). https://doi.org/10.1007/s00348-014-1737-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-014-1737-1

Keywords

  • Particle Image Velocimetry
  • Atmospheric Boundary Layer
  • Settling Velocity
  • Light Sheet
  • Particle Image Velocimetry Measurement