Skip to main content
Log in

Comparison of different tracers for PIV measurements in EHD airflow

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

In this study, a proposed method for selecting a tracer for particle imaging velocimetry (PIV) measurement in electrohydrodynamics flows was developed. To begin with, several published studies were identified that exploit different tracers, such as oil smoke, cigarette smoke and titanium dioxide (TiO2). An assortment of tracers was then selected based on comparisons with conventional dimensionless numbers; Stokes number (St), Archimedes number (Ar) and electrical mobility ratio (M). Subsequently, an experimental study for testing tracers was developed, which enabled the velocity profile of an ionic wind generated by a needle/ring configuration to be measured. Air velocity measurements carried out with a Pitot tube, considered as the reference measurements, were compared to PIV measurements for each tracer. In addition, the current–voltage curves and the evolution of the current during seeding were measured. All the experimental results show that TiO2, SiO2 microballoons and incense smoke are the ideal tracers in the series of tracers investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

τ p :

Relaxation time of particle (s or μs)

τ f :

Characteristic time of fluid (s or μs)

d :

Particle diameter (μm or m)

μ :

Dynamic viscosity (Pa s)

ρ :

Density (kg m−3)

g :

Gravity (m s−2)

Cc :

Cunningham coefficient

E :

Electric field strength (kV m−1)

K :

Electrical mobility (m2 V−1 s−1)

n :

Number of charges

X s :

Specific humidity (kg kg−1)

RH:

Relative humidity (%)

P atm :

Atmospheric pressure (Pa)

T amb :

Ambient temperature (K)

e :

Elementary electron charge (1.6 × 10−19 C)

R p :

Radius (m)

\(D_{\text{n}}\) :

Diameter of the needle (mm)

\(\varepsilon\) :

Dielectric constant of free space (F m−1)

\(\varepsilon_{\text{p}}\) :

Relative dielectric constant of particle

λ :

Mean free path (μm)

\(K_{\text{e }}\) :

Relativity constant (9 × 10 9)

N i :

Ion concentration (ions m−3)

Z i :

Ion mobility (m2 V−1 s−1)

γ :

Surface tension (N m−1)

I :

Intensity of electric current (μA)

V :

Voltage (V or kV)

r :

Cylinder radius (mm)

y :

Distance from the exit jet (mm)

L c :

Characteristic length (m)

m :

Surface roughness

U y :

Velocity along y axis (m s−1)

U c :

Characteristic velocity (m s−1)

δ :

Relative density of the air

f:

Fluid

p:

Particle

L:

Limit

in:

Internal

ex:

External

References

  • Adam T, McAughey J, McGrath C, Mocker C, Zimmerman R (2009) Simultaneous on-line size and chemical analysis of gas phase and particulate phase of cigarette mainstream smoke. Anal Bioanal Chem 394(4):1193–1203

    Article  Google Scholar 

  • Allen PHG, Karayiannis TG (1995) Electrohydrodynamic enhancement of heat transfer and fluid flow. J Heat Recovery Syst CHP 15(5):389–423

    Article  Google Scholar 

  • Atten P, McCluskey FMJ, Lahjomri AC (1987) The electrodynamic origin of turbulence in electrostatic precipitators. IEEE Trans Ind Appl 23(4):705–711

    Article  Google Scholar 

  • Balagopal S, Go DB (2011) Counter-flow ionic wind for localized hot spot cooling. In: Proceedings of ESA annual meeting on electrostatics. IN: 46556

  • Baron R, Havet M, Solliec C, Pierrat D, Touchard G (2008) Numerical and experimental study of a continuous electrostatic smoking process. IEEE Trans Ind Appl 44(4):1052–1058

    Article  Google Scholar 

  • Becquermin HM, Bertholon JF, Attoui M, Roy F, Roy M, Dautzenberg B (2007) Tailles particulaires de la fumée produite par six différents types de cigarettes. Rev Mal Respir 24:845–852

    Article  Google Scholar 

  • Benard N, Moreau E (2010) Capabilities of the dielectric barrier discharge plasma actuator for multi-frequency excitation. J Appl Phys 43:145201

    Google Scholar 

  • Benard N, Moreau E (2012) Role of the electric waveform supplying a dielectric barrier discharge plasma actuator. Appl Phys Lett 100:193503

    Article  Google Scholar 

  • Benard N, Debien A, Moreau E (2013) Time-dependent volume force produced by a non-thermal plasma actuator from experimental velocity field. J Phys D Appl Phys 46:245201. doi:10.1088/0022-3727/46/24/245201

    Google Scholar 

  • Béquin P, Castor K, Scholten J (2003) Electric wind characterization in negative point-to-plane corona discharges in air. Eur Phys J Appl Phys 22:41–49

    Article  Google Scholar 

  • Burgmann S, Van der Schoot S, Asbach C, Wartmann J, Lindken R (2011) Analysis of tracer particles characteristics for micro PIV in wall-bounded gas flows. La houille blanche 4:55–61

    Article  Google Scholar 

  • Chang JS et al (2004) Optimization of seed-particle size and density used in the particle image velocimetry under corona discharge and non-thermal plasmas. In: Proceedings of 7th international conference on optical particle characterization (Kyoto, Japan, August 2004), pp 435–440

  • Chang JS, Brocilo D, Urashima K, Dekowski J, Podlinski J, Mizeraczyk J, Touchard J (2005) On-set of EHD turbulence for cylinder in cross flow under corona discharges. J Electrost 64:69–573

    Google Scholar 

  • Debien A, Benard N, Moreau E (2012) Streamer inhibition for improving force and electric wind produced by DBD actuators. J Appl Phys 45:215201

    Google Scholar 

  • Hinds WC (1999) Aerosol technology: properties, behavior, and measurement of airborne particles. Wiley, NYC

    Google Scholar 

  • IEEE–DEIS Technical Committee February (2003) Recommended international standard for dimensionless parameters used in electrohydrodynamics. IEEE Transaction on Dielectric and Electrical Insulation 10(1):3–6

    Article  Google Scholar 

  • Ikeda Y, Nishigaki M, Ippommatsu M, Hosokawa S, Nakajima, T (1994) Optimum seeding particles for successful LDV experiments. Proceedings of the 6th symposium on applications of laser techniques to fluid mechanics, vol 11, pp 27–132

  • Jaworek A, Lackowski M, Krupa A, Czech T (2006) Electrostatic interaction of free EHD jets. Exp Fluids 40:568–576

    Article  Google Scholar 

  • Joussot R, Leroy A, Weber R, Rabat H, Loyer S, Hong D (2013) Plasma morphology and induced airflow characterization of a DBD actuator with serrated electrode. J Phys D Appl Phys 46:125204. doi:10.1088/0022-3727/46/12/125204

    Article  Google Scholar 

  • Kallio GA, Stock DE (1992) Interaction of electrostatic and fluid dynamic fields in wire-plate electrostatic precipitators. J Fluid Mech 240:133–166

    Article  Google Scholar 

  • Kawamoto H, Umezu S (2008) Electrostatic micro-ozone fan that utilizes ionic wind induced in pin-to-plate corona discharge system. J Electrost 66:445–454

    Article  Google Scholar 

  • Kocik M, Dokwsky J, Mizeraczyck J (2005) Particle precipitation efficiency in an electrostatic precipitator. J Electrost 63:761–766

    Article  Google Scholar 

  • Kotsonis K, Ghaemi S (2011) Forcing mechanisms of dielectric barrier discharge plasma actuators at carrier frequency of 625 Hz. J Appl Phys 110(11):113301

    Article  Google Scholar 

  • Kotsonis M, Ghaemi S (2012) Performance improvement of plasma actuators using asymmetric high voltage waveforms. J Phys D Appl Phys 45. doi:10.1088/0022-3727/45/4/045204

  • Kriegseis J, Schwarz C, Duchmann A, Grundmann S, Tropea C (2012) PIV-based estimation of DBD plasma-actuator force terms, AIAA paper 2012-0411

  • Léger L, Moreau E, Artana G (2001) Influence of a DC corona discharge on the air flow along an inclined flat plate. J Electrost 51–52:300–306

    Article  Google Scholar 

  • Long Z, Yao Q (2010) Evaluation of various particle charging models for simulating particle dynamics in electrostatic precipitators. J Aerosol Sci 41:702–718

    Article  Google Scholar 

  • Melling A (1997) Tracer particles and seeding for particle image velocimetry. Meas Sci Technol 8:1406–1416

    Article  Google Scholar 

  • Mizeraczyck J, Debowski J, Podlinski J, Kocik M, Ohkubo T, Kanazawa S (2003) Laser flow visualization and velocity fields by particle image velocimetry in an electrostatic precipitator model. J Vis 6:125–133

    Article  Google Scholar 

  • Moghaddam S, Kiger KT, Ohadi M (2006) Measurement of corona wind velocity and calculation of energy conversion efficiency for air-said heat transfer enhancement in compact heat exchangers. HVAC Res 12(1):57–68

    Article  Google Scholar 

  • Moreau E (2007) Airflow control by non-thermal plasma actuators. J Appl Phys 40:605–636

    Google Scholar 

  • Neumann A, Friedrich J, Czarske J, Kriegseis J, Grundmann S (2013) Determination of the phase-resolved volume force produced by a dielectric barrier discharge plasma actuator. J Appl Phys 46:042001

    Google Scholar 

  • Niewulis A, Podlinski J, Mizeraczyck J (2009) Electrohydrodynamic flow patterns in a narrow electrostatic precipitator with longitudinal or transverse wire electrode. J Electrost 67:123–127

    Article  Google Scholar 

  • Ould Ahmedou SA, Havet M (2009) Analysis of the EHD enhancement of heat transfer in a flat duct. IEEE Trans Dielectr Electr Insul 16(2):489–494

    Article  Google Scholar 

  • Paone N, Revel GM, Nino E (1996) Velocity measurement in high turbulent premixed flames by a PIV measurement system. In: Proceedings of 8th international symposium on application of laser techniques to fluid mechanics. Lisbon paper 3.4

  • Ping C, Derek D (1996) In situ light scattering measurements of mainstream and sidestream cigarette smoke. Aerosol Sci Technol 24:85–101

    Article  Google Scholar 

  • Podlinski J, Dekowski J, Mizeraczyk J, Brocilo D, Urashima K, Chang JS (2005) EHD flow in a wide electrode spacing spike-plate electrostatic precipitator under positive polarity. J Electrost 64:498–505

    Article  Google Scholar 

  • Pol SU, Balakumar BJ (2012) Design consideration for large field particle image velocimetery (LF-PIV). Meas Sci Technol 24:2. doi:10.1088/0957-0233/24/2/025302

    Google Scholar 

  • Reuss DL, Adrian RJ, Landreth CC, French DT, Fansler TD (1989) Instantaneous planar measurements of velocity and large-scale vorticity and strain rate in an engine using particle-image velocimetry, SAE paper 890616

  • Rickard M, Dunn-Rankin D, Weinberg F, Carleton F (2005) Characterization of ionic wind velocity. J Electrost 63:711–716

    Article  Google Scholar 

  • Shimamoto S, Kazanawa S, Ohokubo T, Nomoto Y, Mizeraczyk J, Chang J (2004) Flow visualisation and current distribution for a corona radical shower reactor. J Electrost 61:223–230

    Article  Google Scholar 

  • Tarlet D, Bendicks C, Rolo C, Bordas R, Wunderlich B, Michaelis B, Thévenin D (2011) Gas flow measurements by 3D particle tracking velocimetry using coloured tracer particles. Flow Turbul Combust 1:110

    Google Scholar 

  • Ullum T, Larsen PS, Özcan O (2004) Three-dimensional flow and turbulence structure in electrostatic precipitator by stereo PIV. Exp Fluids 36:91–99

    Article  Google Scholar 

  • Vincent JH (2007) Aerosol sampling. Science, standards, instrumentation and applications. New York, Wiley

    Google Scholar 

  • Wangnipparnto S, Tiansuwan J, Jiracheewanun S, Kiatsiriroat T, Wang CC (2002) Air side performance of thermosyphon heat exchanger in low Reynolds number region: with and without electric field. Energy Convers Manag 43:1791–1800

    Article  Google Scholar 

  • White HJ (1963) Industrial electrostatic application. Addison-Wesley Publishing Company Inc., Boston

    Google Scholar 

  • Willert C, Jarius M (2002) Planar flow field measurements in atmospheric and pressurized combustion chamber. Exp Fluids 33:931–939

    Article  Google Scholar 

  • Zouzou N, Dramane B, Moreau E, Touchard G (2011) EHD flow and collection efficiency of a DBD ESP in wire-to-plane and plane-to-plane configurations. IEEE Trans Ind Appl. doi:10.1109/tia.2010.2091473

    MATH  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the Pays de Loire program for outstanding research in the field of en ergetics (PERLE2). The authors also wish to acknowledge Dr N. Zouzou (Institut PPrime, Poitiers, France) and Dr. C. Josset (Laboratoire de Thermocinétique de Nantes, France) for fruitful discussions. Authors also acknowledge Dr. E. Bardy (Grove City College, USA) for the careful reading of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hamdi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamdi, M., Havet, M., Rouaud, O. et al. Comparison of different tracers for PIV measurements in EHD airflow. Exp Fluids 55, 1702 (2014). https://doi.org/10.1007/s00348-014-1702-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-014-1702-z

Keywords

Navigation