Skip to main content
Log in

Bayesian inference applied to spatio-temporal reconstruction of flows around a NACA0012 airfoil

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

An Erratum to this article was published on 14 December 2015

Abstract

In this paper, we shall investigate sequential data assimilation techniques to improve the stability of reduced-order models for fluid flows. The reduced-order model used relies on a Galerkin projection of Navier–Stokes equations on proper orthogonal decomposition (POD) basis vectors estimated from snapshots of the flow fields obtained with time-resolved particle image velocimetry (TR-PIV) measurements. The coefficients of the dynamical system are given through a least-squares regression technique applied to the experimental data and lead to a low-order model which is known to diverge, or damp, rapidly in time if left uncontrolled. In this context, a sequential data assimilation method based on a Bayesian approach is proposed. In this formalism, reduced-order models (ROMs) are modeled with discrete time from the hidden Markov processes. Given the whole trajectories of the POD temporal modes, the state of ROM coefficients initially provided by noisy PIV measurements are re-estimated from a Kalman filtering of the sequential data. Results are obtained for the flow around a NACA0012 airfoil at Reynolds numbers of 1000 and 2000 and angles of attack of \(10^{\circ },15^{\circ },20^{\circ }\) and \(30^{\circ }\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Anderson MJ (2001) Permutation tests for univariate or multivariate analysis of variance and regression. Can J Fish Aquat Sci 58(3):626–639

    Google Scholar 

  • Andrews A (1968) A square root formulation of the kalman covariance equations. AIAA J 6:1165–1166

    Article  MATH  Google Scholar 

  • Aubry N (1991) On the hidden beauty of the proper orthogonal decompositon. Theoret Comput Fluid Dyn 2:339–352

    Article  MATH  Google Scholar 

  • Aubry N, Holmes P, Lumley J, Stone E (1988) The dynamics of coherent structures in the wall region of a turbulent boundary layer. J Fluid Mech 192:125–143

    MathSciNet  Google Scholar 

  • Bergmann M, Cordier L (2008) Optimal control of the cylinder wake in the laminar regime by trust region methods and pod reduced-order models. J Comp Phys 227:7813–7840

    Article  MathSciNet  MATH  Google Scholar 

  • Bergmann M, Cordier L, Brancher J (2005) Optimal rotary control of the cylinder wake using pod reduced order model. Phys Fluids 3:1–21

    Google Scholar 

  • Berkooz G, Holmes P, Lumley J (1993) The proper orthogonal decomposition in the analysis of turbulent flows. Ann Rev Fluid Mech 25:539–575

    Article  MathSciNet  Google Scholar 

  • Bishop C, Etherton B, Majumdar S (2001) Adaptive sampling with the ensemble transform kalman filter. Part I: theoretical aspects. Mon Wea Rev 129(3):420–436

    Article  Google Scholar 

  • Buffoni M, Camarri S, Iollo A, Salvetti M (2006) Low-dimensional modelling of a confined three dimensional wake flow. J Fluid Mech 569:141–150

    Article  MATH  Google Scholar 

  • Burgers G, Van Leeuwen P, Evensen G (1998) Analysis scheme in the ensemble Kalman filter. Mon Wea Rev 126:1719–1724

    Article  Google Scholar 

  • Cao Y, Zhu J, Navon I, Luo Z (2007) A reduced order approach to four-dimensional variational data assimilation using proper orthogonal decomposition. Int J Numer Methods Fluids 53(10):1571–1583

    Article  MATH  Google Scholar 

  • Cazemier W, Verstappen R, Veldman A (1998) Proper orthogonal decomposition and low-dimensional models for driven cavity flows. Phys Fluids 10(7):1685–1699

    Article  Google Scholar 

  • Cordier L, El Majd BA, Favier J (2010) Calibration of POD reduced-order models using Tikhonov regularization. Int J Numer Meth Fluids 63:269–296

    Google Scholar 

  • Couplet M, Badevant C, Sagaut P (2005) Calibrated reduced-order pod-galerkin systemfor fluid flow modelling. J Comput Phys 207(1):192–220

    Article  MathSciNet  MATH  Google Scholar 

  • Deane A, Kevrekidis I, Karniadakis G, Orszag S (1991) Low-dimensional models for complex geometry flows: application to grooved channels and circular cylinders. Phys Fluids A 3(10):2337–2354

    Article  MATH  Google Scholar 

  • Delville J, Ukeiley L, Cordier L, Bonnet J, Glauser M (2001) Examination of large-scale structures in a turbulent plane mixing layer. Part 1. Proper orthogonal decomposition. J Fluid Mech 391:91–122

    Article  MathSciNet  Google Scholar 

  • Evensen E (2004) Sampling strategies and square root analysis schemes for the EnKF. Ocean Dyn 54:539–560

    Article  Google Scholar 

  • Evensen G (1994) Sequential data assimilation with nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J Geophys Res 99(C5):10143–10162

    Article  Google Scholar 

  • Evensen G (2003) Ensemble Kalman filter: theoretical formulation and practical implementations. Ocean Dyn 53(4):343–367

    Article  Google Scholar 

  • Evensen G (2006) Data assimilation the ensemble Kalman filter. Springer, Berlin

    Google Scholar 

  • Fang F, Pain C, Navon I, Piggot M, GJ G, Goddard A (2009) Reduced order modelling of an adaptative mesh ocean model. Int J Numer Methods Fluids 59(8):827–851

    Article  MATH  Google Scholar 

  • Galletti B, Bruneau C, Zannetti L, Iollo A (2004) Low-order modelling of laminar flow regimes past a confined square cylinder. J Fluid Mech 503:161–170

    Article  MathSciNet  MATH  Google Scholar 

  • Galletti B, Bottaro A, Bruneau C, Iollo A (2005) Accurate model reduction of transient flows. RR INRIA 5676:141–148

    Google Scholar 

  • Gelb A (1974) Applied optimal estimation. MIT Press, Cambridge

    Google Scholar 

  • Holmes P, Lumley JL, Berkooz G (1996) Turbulence, coherent structures, dynamical systems and symmetry. Cambridge Monographs on Mechanics. Cambridge University Press, New York

  • Houtekamer P, Mitchell H, Pellerin G, Buehner M, Charron M, L S, B H (2005) Athmospheric data assimilation with an ensemble kalman filter: results with real observations. Mon Wea Rev 133:604–620

    Article  Google Scholar 

  • Huang R, Wu J, Jeng J, Chen R (2001) Surface flow and vortex shedding of an impulsively started wing. J Fluid Mech 441:265–292

    MATH  Google Scholar 

  • Kalman R, Bucy R (1961) New results in linear filtering and prediction theory. J Basic Eng Trans ASME Ser D 83(3):95–108

    Article  MathSciNet  Google Scholar 

  • Karamanos G, Karniadakis G (2000) A spectral vanishing viscosity method for large eddy simulations. J Comput Phys 163(1):22–50

    Article  MathSciNet  MATH  Google Scholar 

  • Le Dimet FX, Talagrand O (1986) Variational algorithm for analysis and assimilation of meteorological observations: theoretical aspects. Tellus 38(A):97–110

    Article  Google Scholar 

  • Le Gland F (2009) Introduction au filtrage en temps discret—filtre de kalman, filtrage particulaire, modèles de markov cachés. Ecole Nationale Supérieure de Techniques Avancées

  • Lumley J (1967) The structures of inhomogeneous turbulent flow. In: Yaglom AM, Tatarski VI (eds) Atmospheric turbulence and radioWave propagation. Nauka, Moscow Edition, pp 166–178

    Google Scholar 

  • McKean H (1969) Propagation of chaos for a class of non-linear parabolic equations. Lectures series in differential equations, vol 2, volume 19 of Van Nostrand Mathematical Studies. Vans Nostrand Reinhold, NewYork, pp 177–194

  • Noack B, Afanasiev K, Morzynski M, Tadmor G, Thiele F (2003) A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J Fluid Mech 497:335–363

    Article  MathSciNet  MATH  Google Scholar 

  • Noack B, Papas P, Monkewitz P (2005) The need for a pressure-term representation in empirical Galerkin models of incompressible shear flows. J Fluid Mech 523:339–365

    Article  MathSciNet  MATH  Google Scholar 

  • Perret L, Collin E, Delville J (2006) Polynomial identification of pod based low-order dynamical system. J Turbul 7(17):1–15

    MathSciNet  Google Scholar 

  • Pham D (2001) Stochastic methods for sequential data assimilation in strongly nonlinear systems. Mon Wea Rev 129:1194–1207

    Article  Google Scholar 

  • Pham D, Verron J, Gouideau L (1998) Filtres de kalman singuliers évolutifs pour l’assimilation de données en océanographie. CR Acad Sci Paris 326:255–260

    Article  Google Scholar 

  • Podvin B, Lumley J (1998) A low-dimensional approach for the minimal flow unit. J Fluid Mech 362:121–151

    Article  MathSciNet  MATH  Google Scholar 

  • Rempfer D (2000) On low dimensional galerkin models for fluid flows. Theor Comput Fluid Dyn 14(2):75–88

    Article  MATH  Google Scholar 

  • Sirovitch L (1987) Turbulence and the dynamics of coherent structures. Part 1: coherent structures. Quart Appl Math XLV(3):561–574

    Google Scholar 

  • Tippett M, Anderson J, Bishop C, Hamill T, Whitaker J (2003) Ensemble square root filters. Mon Wea Rev 31:1485–1490

    Article  Google Scholar 

  • Whitaker J, Hamil T (2002) Ensemble data assimilation without perturbed observations. Mon Wea Rev 130:913–1924

    Article  Google Scholar 

Download references

Acknowledgments

This work has supported by the EU-project: Advanced Flow Diagnostics for Aeronautical Research, project no. 265695.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leroux Romain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romain, L., Chatellier, L. & David, L. Bayesian inference applied to spatio-temporal reconstruction of flows around a NACA0012 airfoil. Exp Fluids 55, 1699 (2014). https://doi.org/10.1007/s00348-014-1699-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-014-1699-3

Keywords

Navigation