Skip to main content
Log in

Generation of isolated vortices in a rotating fluid by means of an electromagnetic method

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

We present a method for generating isolated monopolar vortices in rotating tank experiments. The technique is based on the electromagnetic forcing commonly used in nonrotating systems, which consists of setting a vertical magnetic field—parallel to the rotation axis—and a horizontal density current in an electrolytic fluid layer. The magnetic field is provided by a permanent magnet placed underneath the central point of the fluid container, while a radial density current is established between a central electrode and a number of opposite-sign electrodes at the periphery. The resulting azimuthal Lorentz force creates a monopolar vortex. It is shown that the generated vortices are axisymmetric and isolated, that is, their total circulation is zero. Cyclonic or anticyclonic vortices can be generated by choosing the appropriate polarity of the electrodes or the orientation of the magnet. The strength of the vortices is regulated by the magnitude of the density current and by the forcing time. This method allows the systematic study of the unstable evolution of isolated vortices, which is characterized by the formation of multipolar vortices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Afanasyev YD, Wells J (2005) Quasi-two-dimensional turbulence on the polar beta-plane: laboratory experiments. Geophys Astrophys Fluid Dyn 99:1–17

    Article  MathSciNet  MATH  Google Scholar 

  • Beckers M, van Heijst GJF (1998) The observation of a triangular vortex in a rotating fluid. Fluid Dyn Res 22:265–279

    Article  MATH  Google Scholar 

  • Bondarenko NF, Gak EZ, Gak MZ (2002) Application of MHD effects in electrolytes for modeling vortex processes in natural phenomena and in solving engineering-physical problems. J Eng Phys Thermophys 75:1234–1247

    Article  Google Scholar 

  • Carnevale GF, Kloosterziel RC (1994) Emergence and evolution of triangular vortices. J Fluid Mech 341:127–163

    Article  MathSciNet  Google Scholar 

  • Carnevale GF, Kloosterziel RC, Orlandi P, van Sommeren DDJA (2011) Predicting the aftermath of vortex breakup in rotating flow. J Fluid Mech 669:90–119

    Article  MathSciNet  MATH  Google Scholar 

  • Carton XJ, Flierl GR, Polvani LM (1989) The generation of tripoles from unstable axisymmetric isolated vortex structures. Europhys Lett 9:339–344

    Article  Google Scholar 

  • Clercx HJH, van Heijst GJF, Zoeteweij ML (2003) Quasi-two-dimensional turbulence in shallow fluid layers: the role of bottom friction and fluid layer depth. Phys Rev E 67(066303):1–9

    Google Scholar 

  • Duran-Matute M, Di Nitto G, Trieling RR, Kamp LPJ, van Heijst GJF (2012). The break-up of Ekman theory in a flow subjected to background rotation and driven by a non-conservative body force. Phys Fluids 24:116602

    Article  Google Scholar 

  • Espa E, Carnevale GF, Cenedese A, Mariani M (2008) Quasi-two-dimensional decaying turbulence subject to the β-effect. J Turbul 9:N36

    Article  Google Scholar 

  • Espa E, Cenedese A, Mariani M, Carnevale GF (2009) Quasi-two-dimensional flow on the polar β-plane: laboratory experiments. J Mar Sys 77:502–510

    Article  Google Scholar 

  • Figueroa A, Demiaux F, Cuevas S, Ramos E (2009) Electrically driven vortices in a weak dipolar magnetic field in a shallow electrolytic layer. J Fluid Mech 641:245–261

    Article  MATH  Google Scholar 

  • Flierl GR (1988) On the instability of geostrophic vortices. J Fluid Mech 197:349–388

    Article  MathSciNet  MATH  Google Scholar 

  • Hopfinger EJ, van Heijst GJF (1993) Vortices in rotating fluids. Annu Rev Fluid Mech 25:241–289

    Article  Google Scholar 

  • Kloosterziel RC, van Heijst GJF (1991) An experimental study of unstable barotropic vortices in a rotating fluid. J Fluid Mech 223:1–24

    Article  Google Scholar 

  • Kloosterziel RC, van Heijst GJF (1992) The evolution of stable barotropic vortices in a rotating free-surface fluid. J Fluid Mech 239:607–629

    Article  Google Scholar 

  • Kloosterziel RC, Carnevale GF (1999) On the evolution and saturation of instabilities of two-dimensional isolated circular vortices. J Fluid Mech 388:217–257

    Article  MathSciNet  MATH  Google Scholar 

  • Orlandi P, Carnevale GF (1999) Evolution of isolated vortices in a rotating fluid of finite depth. J Fluid Mech 381:239–269

    Article  MathSciNet  MATH  Google Scholar 

  • Sommeria J (1986) Experimental study of the two-dimensional inverse energy cascade in a square box. J Fluid Mech 170:139–168

    Article  Google Scholar 

  • Sommeria J (1988) Electrically driven vortices in a strong magnetic field. J Fluid Mech 189:553–569

    Article  Google Scholar 

  • Tabeling P, Burkhart S, Cardoso O, Willaime H (1991) Experimental study of freely decaying two-dimensional turbulence. Phys Rev Lett 67:3772–3775

    Article  Google Scholar 

  • Trieling RR, van Heijst GJF, Kizner Z (2010) Laboratory experiments on multipolar vortices in a rotating fluid. Phys Fluids 22:094104

    Article  Google Scholar 

  • van Heijst GJF, Kloosterziel RC (1989) Tripolar vortices in a rotating fluid. Nature 338:569–571

    Article  Google Scholar 

  • van Heijst GJF, Clercx HJH (2009) Laboratory modeling of geophysical vortices. Annu Rev Fluid Mech 41:143–164

    Article  Google Scholar 

  • van Heijst GJF, Kloosterziel RC, McWilliams CW (1991) Laboratory experiments on the tripolar vortex in a rotating fluid. J Fluid Mech 225:301–331

    Article  Google Scholar 

  • Zavala Sansón L, van Heijst GJF (2000) Nonlinear Ekman effects in rotating barotropic flows. J Fluid Mech 412: 75–91

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The experiments were performed at the rotating table of the Laboratorio de Dinámica de Fluidos Geofísicos of the Instituto de Astronomía y Meteorología, Universidad de Guadalajara, México. The authors gratefully acknowledge the help of Roberto Toscano with the experimental work and of two anonymous reviewers for their valuable comments on the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Zavala Sansón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cruz Gómez, R.C., Zavala Sansón, L. & Pinilla, M.A. Generation of isolated vortices in a rotating fluid by means of an electromagnetic method. Exp Fluids 54, 1582 (2013). https://doi.org/10.1007/s00348-013-1582-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-013-1582-7

Keywords

Navigation