Skip to main content

Advertisement

Log in

Experimental characterization of powered Fontan hemodynamics in an idealized total cavopulmonary connection model

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

A viscous impeller pump (VIP) based on the Von Karman viscous pump is specifically designed to provide cavopulmonary assist in a univentricular Fontan circulation. The technology will make it possible to biventricularize the univentricular Fontan circulation. Ideally, it will reduce the number of surgeries required for Fontan conversion from three to one early in life, while simultaneously improving physiological conditions. Later in life, it will provide a currently unavailable means of chronic support for adolescent and adult patients with failing Fontan circulations. Computational fluid dynamics simulations demonstrate that the VIP can satisfactorily augment cavopulmonary blood flow in an idealized total cavopulmonary connection (TCPC). When the VIP is deployed at the TCPC intersection as a static device, it stabilizes the four-way flow pattern and is not obstructive to the flow. Experimental studies are carried out to assess performance, hemodynamic characteristics, and flow structures of the VIP in an idealized TCPC model. Stereoscopic particle image velocimetry is applied using index-matched blood analog. Results show excellent performance of the VIP without cavitation and with reduction of the energy losses. The non-rotating VIP smoothes and accelerates flow, and decreases stresses and turbulence in the TCPC. The rotating VIP generates the desired low-pressure Fontan flow augmentation (0–10 mmHg) while maintaining acceptable stress thresholds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Adrian RJ, Westerweel J (2010) Particle image velocimetry. Cambridge University Press

  • Apel J, Reinhard P, Sebastian K, Thorsten S, Helmut R (2001) Assessment of hemolysis related quantities in a microaxial blood pump by computational fluid dynamics. Artif Organs 25(5):341–347

    Article  Google Scholar 

  • Ashburn DA, McCrindle BW, Tchervenkov CI, Jacobs ML, Lo GK, Bove EL, Spray TL, Williams WG, Blackstone EH (2003) Outcomes after the norwood operation in neonates with critical aortic stenosis or aortic valve atresia. J Thorac Cardiovasc Surg 125:1070–1082

    Article  Google Scholar 

  • Blackshear PL, Blackshear GL, Skalak R (1987) Handbook of bioengineering. Mc-Graw-Hill, New-York, chap Mechanical Hemolysis

  • Bludszuweit C (1995) Three-dimensional numerical prediction of stress loading of blood particles in a centrifugal pump. Artif Organs 19(7):590–596

    Article  Google Scholar 

  • Bluestein D, Niu L, Schoephoerter R, Dewanjee MK (1997) Fluid mechanics of arterial stenosis: relationship to the development of mural thrombus. Ann Biomed Eng 25(2):334–356

    Article  Google Scholar 

  • Bradshaw P, Pankhurst RC (1964) The design of low-speed wind tunnels. Prog Aerosp Sci 5:1–69

    Article  Google Scholar 

  • Chen J, Lu X (2004) Numerical investigation of the non-newtonian blood flow in a bifurcation model with a non-planar branch. J Biomech 37(12):1899–1911

    Article  Google Scholar 

  • Dasi LP, Pekkan K, Katajima HD, Yoganathan AP (2008) Functional analysis of fontan energy dissipation. J Biomech 41(10):2242–2252

    Article  Google Scholar 

  • DeLeval MR (1998) The fontan circulation: what have we learned? What to expect? Pediatr Cardiol 19(4):316–320

    Article  Google Scholar 

  • Delorme YT, Anupindi K, Kerlo AM, Shetty D, Rodefeld MD, Chen J, Frankel SH (2013) Large eddy simulation of powered fontan hemodynamics. J Biomech 46:408–422

    Article  Google Scholar 

  • Durbin P, Reif BP (2010) Statistical theory and modeling for turbulent flows, 2nd edn. Wiley, New York

    Book  Google Scholar 

  • Fontan F, Baudet E (1971) Surgical repair of tricuspid atresia. Thorax 26(3):240–248

    Article  Google Scholar 

  • Forstrom RJ, Blackshear GL (1970) Needles and hemolysis. N Engl J Med 283:208–209

    Article  Google Scholar 

  • Fraser K, Zhang T, Taskin ME, Griffith BP, Wu ZJ (2012) A quantitative comparison of mechanical blood damage parameters in rotary ventricular assist devices: shear stress, exposure time and hemolysis index. J Biomech Eng 134(8):081,002

    Article  Google Scholar 

  • Gijsen FJH, Allanic E, Vosse FNVD, Janssen JD (1999) The influence of the non-newtonian properties of blood on the flow in large arteries: unsteady flos in a 90 curved tube. J Biomech 32:705–713

    Article  Google Scholar 

  • Gillum RF (1994) Epidemiology of congenital heart disease in the united states. Am Heart J 127:919–927

    Article  Google Scholar 

  • Giridharan GA, Koenig SC, Sobieski MA, Kennington J, Chen J, Frankel SH, Rodefeld MD (2013) Performance evaluation of a pediatric viscous impeller pump for fontan cavopulmonary assist. J Thorac Cardiovasc Surg 145(1):249–257

    Article  Google Scholar 

  • Hsu C, Vu H, Kang Y (2009) The rheology of blood flow in a branched aterial system with three dimensional model: a numerical study. J Mech 25(4):N21–N24

    Article  Google Scholar 

  • International A (2005a) Astm f1830-97: standard practice for selection of blood for in vitro evaluation of blood pumps. West Conshohocken, PA

  • International A (2005b) Astm f1841-97: standard practice for assessment of hemolysis in continuous flow blood pumps. West Conshohocken, PA

  • Johnston BM, Johnston PR, Corney S, Kilpatrick D (2006) Non-newtonian blood flow in human right coronary arteries: transient simulations. J Mech 39(6):1116–1128

    Google Scholar 

  • Karman TV (1921) Uber laminare und turbulente reibung. J Appl Math Mech/Zeitschrift fur Angewandte Mathematik und Mechanik 1(4):233–252

    MATH  Google Scholar 

  • Keane RD, Adrian RJ (1990) Optimization of particle image velocimeters. part 1: double pulsed systems. Meas Sci Technol 1:1202–1215

  • Kennington JR, Frankel SH, Chen J, Koenig SC, Sobieski MA, Giridharan GA, Rodefeld MD (2011) Design optimization and performance studies of an adult scale viscous impeller pump for powered fontan in an idealized total cavopulmonary connection. Cardiovasc Eng Technol J 2(4):237–243

    Article  Google Scholar 

  • Khunatorn Y, Shandas R, DeGro C, Mahalingam S (2003) Comparison of in vitro velocity measurements in a scaled total cavopulmonary connection with computational predictions. Ann Biomed Eng 31(7):810–822

    Article  Google Scholar 

  • Marsden A, Bernstein A, Reddy M, Shadden S, Spilket R, Chan F, Taylor C, Feinstein J (2009) Evaluation of a novel y-shaped extracardiac fontan baffle using computational fluid dynamics. J Thorac Cardiovasc Surg 137:394–403

    Article  Google Scholar 

  • Migliavacca F, Dubini G, Bove E, DeLeval M (2003) Computational fluid dynamics simulations in realistic 3d geometries of the total cavopulmonary anastomosis: the influence of the inferior vena cava anastomosis. J Biomech Eng 125:805–813

    Article  Google Scholar 

  • Ohye RG, Sleeper LA, Mahony L, Newburger JW, Pearson GD, Lu M, Goldberg CS, Tabbutt S, Frommelt PC, Ghanayem NS (2010) Comparison of shunt types in the norwood procedure for single-ventricle lesions. N Engl J Med 362(21):1980–1992

    Article  Google Scholar 

  • Panton RL (2005) Incompressible flow, 3rd edn. Wiley, New York

    Google Scholar 

  • Pekkan K, de Zelicourt D, Ge L, Sotiropoulos F, Frakes D, Fogel M, Yoganathan A (2005) Physics driven cfd modeling of complex anatomical cardiovascular flows—a tcpc case study. Ann Biomed Eng 33(3):284–300

    Article  Google Scholar 

  • Pike NA, Vricella LA, Feinstein JA, Black MD, Reitz BA (2004) Regression of severe pulmonary arteriovenous malformations after fontan revision and “hepatic factor” rerouting. Ann Thorac Surg 78:697–699

    Article  Google Scholar 

  • Pope SB (2006) Turbulent flows. Cambridge University Press, Cambridge

    Google Scholar 

  • Prasad AK (2000) Stereoscopic particle image velocimetry. Exp Fluids (29):103–116

  • Raffel M, Willert CE, Wereley ST, Kompenhans J (2007) Particle image velocimetry: a practical guide. In: Experimental fluid mechanics, 2nd edn. Springer, New York

  • Rodefeld M, Boyd J, Myers C, LaLone B, Bezruczko A, Potter A, Brown J (2003) Cavopulmonary assist: circulatory support for the univentricular fontan circulation. Ann Thorac Surg 76:1911–1916

    Article  Google Scholar 

  • Rodefeld M, Frankel S, Giridharan G (2011) Cavopulmonary assist: (em)powering the univentricular fontan circulation. Ann Thorac Surg 4(1):45–54

    Google Scholar 

  • Rodefeld MD, Bromberg BI, Schuessler JP, Boineau JP, Cox JL, Huddleston CB (1996) Atrial flutter after lateral tunnel construction in the modified fontan operation: a canine model. J Thorac Cardiovasc Surg 111:514–525

    Article  Google Scholar 

  • Rodefeld MD, Coats B, Fisher T, Giridharan GA, Chen J, Brown JW, Frankel SH (2010) Cavopulmonary assist for the univentricular fontan circulation: Von karman viscous impeller pump. J Thorac Cardiovasc Surg 140(3):529–536

    Article  Google Scholar 

  • Rutten F, Schroder W, Meinke M (2005) Large-eddy simulation of low frequency oscillations of the dean vorticies in turbulent pipe bend flows. Phys Fluids 17(3):035,107–11

    Article  Google Scholar 

  • Soerensen D, Pekkan K, DeZelicourt D, Sharma S, Kanter K, Fogel M, Yoganathan A (2007) Introduction of a new optimized total cavopulmonary connection. Ann Thorac Surg 83:2182–2190

    Article  Google Scholar 

  • Sykes DM (1977) A new wind tunnel for industrial aerodynamics. J Wind Eng Ind Aerodyn 2(1):65–78

    Article  Google Scholar 

  • Throckmorton A, Ballman K, Myers C, Litwak K, Frankel SH, Rodefeld MD (2007) Mechanical cavopulmonary assist for the univentricular fontan circulation using a novel folding propeller blood pump. Am Soc Artif Intern Organs 53:734–741

    Article  Google Scholar 

  • Ungerleider RM, Shen I, Yeh T, Schultz J, Butler R, Silberbach M, Giacomuzzi C, Heller E, Studenberg L, Mejak B, You J, Farrel D, McClure S, Austin EH (2004) Routine mechanical ventricular assist following the norwood procedure improved neurologic outcome and excellent hospital survival. Ann Thorac Surg 77(1):18–22

    Article  Google Scholar 

Download references

Acknowledgments

Funding was provided in part by National Institutes of Health grants HL080089 and HL098353, and by an American Heart Association Predoctoral Fellowship (11PRE7840073) (A.E.K.). The authors would also like to acknowledge Michael A. Sobieski RN, CCP and Steven C. Koenig of University of Louisville for their help with hemolysis testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kerlo, AE.M., Delorme, Y.T., Xu, D. et al. Experimental characterization of powered Fontan hemodynamics in an idealized total cavopulmonary connection model. Exp Fluids 54, 1581 (2013). https://doi.org/10.1007/s00348-013-1581-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-013-1581-8

Keywords

Navigation