Skip to main content
Log in

Experimental study of the internal flow structures inside a fluidic oscillator

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The internal flow characteristics of a fluidic oscillator were investigated experimentally. Particle image velocimetry and time-resolved pressure measurements were employed in water to visualize and quantify the internal flow patterns. The method of proper orthogonal decomposition was applied to random flow field snap shots for phase reconstruction of one oscillation cycle. The resulting phase-averaged information provides detailed insight into the oscillation mechanism as well as into the interaction between the main chamber of the oscillator and its feedback channels. A growing recirculation bubble between the main jet and the attachment wall is identified as an underlying mechanism that causes the main jet to oscillate. The flow field measurements are complemented by time-resolved pressure measurements at various internal locations which yield additional comprehension of the switching behavior and accompanying timescales. Geometrical features, in particular at the inlet and outlet of the mixing chamber, are found to have a crucial impact on important flow characteristics such as oscillation frequency and jet deflection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Arwatz G, Fono I, Seifert A (2008) Suction and oscillatory blowing actuator modeling and validation. AIAA J 46(5):1107–1117. doi:10.2514/1.30468

    Article  Google Scholar 

  • Cerretelli C, Kirtley K (2009) Boundary layer separation control with fluidic oscillators. J Turbomach 131(4):041001–041009. doi:10.1115/1.3066242

    Article  Google Scholar 

  • Cerretelli C, Gharaibah E, Toplack G, Gupta A, Wuerz W (2009) Unsteady separation control for wind turbine applications at full scale Reynolds Numbers. AIAA paper no 2009-380

  • Goelling B, Bauer M, Nitsche W (2012) Fluid actuator for influencing the flow along a flow surface, as well as blow-out device and flow body comprising a like fluid actuator. WIPO Patent WO 2012(048853):A1

    Google Scholar 

  • Gokoglu AS, Kuczmarski MA, Culley DE, Raghu S (2009) Numerical studies of fluidic diverter for flow control. AIAA paper no 2009–2012

  • Gokoglu SA, Kuczmarski MA, Culley DE, Raghu S (2010) Numerical studies of a supersonic fluidic diverter actuator for flow control. AIAA paper no 2010-4415

  • Gokoglu AS, Kuczmarski MA, Culley DE, Raghu S (2011) Numerical studies of an array of fluidic diverter actuators for flow control. AIAA paper no 2011-3100

  • Gregory JW, Sullivan JP, Raman G, Raghu S (2007) Characterization of a micro fluidic oscillator. AIAA J 45(3):568–576. doi:10.2514/1.26127

    Article  Google Scholar 

  • Guyot D, Paschereit CO, Raghu S (2009) Active combustion control using a fluidic oscillator for asymmetric fuel flow modulation. Int J Flow Control 1(2):155–166. doi:10.1260/175682509788913335

    Article  Google Scholar 

  • Holmes P, Lumley JL, Berkooz G (1998) Turbulence, coherent structures, dynamical systems and symmetry. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Kirshner JM, Katz S (1975) Design theory of fluidic components. Academic Press Inc., New York

    Google Scholar 

  • Melling A (1997) Tracer particles and seeding for particle image velocimetry. Meas Sci Technol 8(12):1406–1416. doi:10.1088/0957-0233/8/12/005

    Article  Google Scholar 

  • Oberleithner K, Sieber M, Nayeri CN, Paschereit CO, Petz C, Hege HC, Noack BR, Wygnanski IJ (2011) Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: stability analysis and empirical mode construction. J Fluid Mech 679:383–414. doi:10.1017/jfm2011.141

    Article  MATH  Google Scholar 

  • Phillips E, Woszidlo R, Wygnanski IJ (2010) The dynamics of separation control on a rapidly actuated flap. AIAA paper no 2010-4246

  • Raghu S (2001) Feedback-free fluidic oscillator and method. U.S. Patent 6,253,782

  • Raman G, Raghu S (2004) Cavity resonance suppression using miniature fluidic oscillators. AIAA J 42(12):2608–2611. doi:10.2514/1.521

    Article  Google Scholar 

  • Seele R, Tewes P, Woszidlo R, McVeigh MA, Lucas N, Wygnanski IJ (2009) Discrete sweeping jets as tools for improving the performance of the V-22. AIAA J Aircr 46(6):2098–2106. doi:10.2514/1.43663

    Article  Google Scholar 

  • Seele R, Graff E, Gharib M, Taubert L, Lin J, Wygnanski IJ (2012) Improving rudder effectiveness with sweeping jet actuators. AIAA paper no 2012-3244

  • Stouffer RD (1979) Oscillating spray device. U.S. Patent 4,151,955

  • Taubert L, Wygnanski IJ (2009) Preliminary experiments applying active flow control to a 1/24th scale model of a semi-trailer truck. Aerodyn Heavy Veh II Trucks Buses Trains 41:105–113. doi:10.1007/978-3-540-85070-0_9

    Article  Google Scholar 

  • Tewes P, Taubert L, Wygnanski IJ (2010) On the use of sweeping jets to augment the lift of a λ-wing. AIAA paper no 2010-4689

  • Vatsa VN, Koklu M,Wygynanski IJ, Fares E (2012) Numerical simulation of fluidic actuators for flow control applications. AIAA paper no 2012-3239

  • Viets H (1975) Flip-flop jet nozzle. AIAA J 13(10):1375–1379. doi:10.2514/3.60550

    Article  Google Scholar 

  • Woszidlo R (2011) Parameters governing separation control with sweeping jet actuators. University of Arizona, Dissertation

    Google Scholar 

  • Woszidlo R, Wygnanski IJ (2011) Parameters governing separation control with sweeping jet actuators. AIAA paper no 2011-3172

Download references

Acknowledgments

The authors would like to thank the CONFET-group of the HFI for assistance in the laboratory and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Woszidlo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (GIF 7763 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bobusch, B.C., Woszidlo, R., Bergada, J.M. et al. Experimental study of the internal flow structures inside a fluidic oscillator. Exp Fluids 54, 1559 (2013). https://doi.org/10.1007/s00348-013-1559-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-013-1559-6

Keywords

Navigation