Skip to main content
Log in

Drop-on-demand for aqueous solutions of sodium alginate

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Inkjet printing is a rapidly growing commercial process for applications that depend on precisely patterning micro-scale droplets. These applications increasingly require complex fluids, introducing viscoelastic properties which play an important role in droplet formation. The objective of this study is to determine how to obtain single, uniform and spherical (“successful”) droplets from aqueous solutions of sodium alginate with a piezoelectric drop-on-demand printing method. In order to control the volume and velocities of droplets, the effect on the droplet formation of the characteristics of the waveform such as voltage amplitude and dwell time is studied. The results depend also on the fluid rheology. The viscosity of the chosen fluid is a function of the concentration, as the viscoelastic properties increase at higher concentration. In this paper, the droplet formation process is characterized in terms of both the waveform and the rheological properties of the solution. The characterization of the fluids and waveform will be pursued first and the droplet formation and its control will be studied. Finally, the results will be presented with a map in ranges of the Ohnesorge, Deborah and Weber numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  • Anna SL, McKinley GH (2001) Elasto-capillary thinning and breakup of model elastic liquids. J Rheol 45:115–138

    Article  Google Scholar 

  • Basaran OA (2002) Small-scale free surface flows with break-up: drop formation and emerging applications. AIChE J 48:1842–1848

    Article  Google Scholar 

  • Basaran OA, Gao H, Bhat PP (2013) Nonstandard Inkjets. Annu Rev Fluid Mech 45:85–113

    Article  Google Scholar 

  • Bhat PP, Appathurai S, Harris MT, Pasquali M, McKinley GH, Basaran OA (2010) Formation of beads-on-a-string structures during break-up of viscoelastic filaments. Nat Phys 6:625–631

    Article  Google Scholar 

  • Bogy DB, Talke FE (1984) Experimental and theoretical study of wave propagation phenomena in drop-on-demand ink jet devices. IBM J Res Dev 28:314–321

    Article  Google Scholar 

  • Bousfield DW, Keunings R, Marrucci G, Denn MM (1986) Nonlinear analysis of the surface tension driven breakup of viscoelastic filaments. J Non-Newton Fluid Mech 21:79–97

    Article  Google Scholar 

  • Brenn G, Liu Z, Durst F (2000) Linear analysis of the temporal instability of axisymmetrical non-Newtonian liquid jets. Int J Multiph Flow 26:1621–1644

    Article  MATH  Google Scholar 

  • Castrejón-Pita AA, Castrejon-Pita JR, Hutchings IM (2012a) Breakup of liquid filaments. PRL 108:074506-1-5

    Google Scholar 

  • Castrejón-Pita AA, Castrejón-Pita JR, Martin GD (2012b) A novel method to produce small droplets from large nozzles. Rev Sci Instrum 83:115105-1-4

    Google Scholar 

  • Chen AU, Basaran OA (2002) A new method for significantly reducing drop radius without reducing nozzle radius in drop-on-demand drop production. Phys Fluids 14:L1–L4

    Article  Google Scholar 

  • Clasen C, Eggers J, Fontelos MA, Li J, McKinley GH (2006) The beads-on-string structure of viscoelastic threads. J Fluid Mech 556:283–308

    Article  MATH  Google Scholar 

  • Clasen C, Phillips PM, Palangetic L, Vermant J (2012) Dispensing of rheologically complex fluids: the map of misery. AIChE J 58:3242–3255

    Article  Google Scholar 

  • Cooper-White JJ, Fagan JE, Tirtaatmadja V, Lester DR, Boger DV (2002) Drop formation dynamics of constant low-viscosity, elastic fluids. J Non-Newton Fluid Mech 106:29–59

    Article  MATH  Google Scholar 

  • Dong H, Carr WW (2006) An experimental study of drop-on-demand drop formation. Phys Fluids 18:072102-072102-16

    Google Scholar 

  • Donnan FG, Rose RC (1950) Osmotic pressure, molecular weight, and viscosity of sodium alginate. Can J Res 28b:105–113

    Google Scholar 

  • Eggers J (1997) Nonlinear dynamics and break-up of free-surface flows. Rev Modern Phys 69:207

    Article  Google Scholar 

  • Entov VM, Hinch EJ (1997) Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid. J Non-Newtonian Fluid Mech 72(31–54):1997

    Google Scholar 

  • Fan KC, Chen JY, Wang CH, Pan WC (2008) Development of a drop-on-demand droplet generator for one-drop-fill technology. Sens Actuators A 147:649–655

    Article  Google Scholar 

  • Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca

  • Fu S, Thacker A, Sperger DM, Boni RL, Buckner IS, Velankar S, Munson EJ, Block LH (2010) Rheological evaluation of inter-grade and inter-batch variability of sodium alginate. AAPS Pharm Sci Tech 11:1662–1674

    Article  Google Scholar 

  • Gan HY, Shan X, Eriksson T, Lok BK, Lam YC (2009) Reduction of droplet volume by controlling actuating waveforms in inkjet printing for micro-pattern formation. J Micromech Microeng 19:055010-055010-8

    Google Scholar 

  • Ghimici L, Nichifor M, Wolf B (2009) Ionic polymers based on dextran: hydrodynamics properties in aqueous solution and solvent mixtures. J Phys Chem B 113:8020–8025

    Article  Google Scholar 

  • Gibson G, Sheng X, Henze D, Lam ST, Beck P, Jeon Y, Zhou ZL, Benson B, Liu Q, Combs G, Koch T, Biggs K (2012) Fast full-color reflective display via photoluminescent enhancement. J Soc Inf Disp. doi:10.1002/jsid.109

  • Goldin M, Yerushalmi J, Pfeffer R, Shinnar R (1969) Break-up of a laminar capillary jet of a viscoelastic fluid. J Fluid Mech 38:689–711

    Article  Google Scholar 

  • Graessley WW (1980) Polymer chain dimensions and the dependence of viscoelastic properties on concentration, molecular-weight and solvent power. Polymer 21:258–262

    Article  Google Scholar 

  • Haward SJ, Sharma V, Butts CP, McKinley GH, Rahatekar SS (2012) Shear and extensional rheology of cellulose/ionic liquid solutions. Biomacromolecules 13:1688–1699

    Article  Google Scholar 

  • Herran CL, Huang Y (2012) Alginate microsphere fabrication using bipolar wave-based drop-on-demand jetting. J Manuf Process 14:98–106

    Article  Google Scholar 

  • Herran CL, Huang Y, Chai W (2012) Performance evaluation of bipolar and tripolar excitations during nozzle-jetting-based alginate microsphere fabrication. J Micromech Microeng 22:085025-085025-11

    Google Scholar 

  • Hoath SD, Hutchings IM, Harlen OG, McIlroy C, Morrison NF (2012) Regimes of polymer behaviour in drop-on-demand ink-jetting. In: 28th international conference on digital printing technologies, Quebec City, Quebec, Canada

  • Jang D, Kim D, Moon J (2009) Influence of fluid physical properties on ink-jet printability. Langmuir 25:2629–2635

    Article  Google Scholar 

  • Jo BW, Lee A, Ahn KH, Lee SJ (2009) Evaluation of jet performance in drop-on-demand (DOD) inkjet printing. Korean J Chem Eng 26:339–348

    Article  Google Scholar 

  • Keller J, Miksis MJ (1983) Surface tension driven flows. SIAM J Appl Math 43:268–277

    Article  MathSciNet  MATH  Google Scholar 

  • Kim E, Baek J (2012) Numerical study on the effects of non-dimensional parameters on drop-on-demand droplet formation dynamics and printability range in the up-scaled model. Phys Fluids 24:082103-1-12

    Google Scholar 

  • Kwon KS (2009) Waveform design methods for piezo inkjet dispensers based on measured meniscus motion. J Microelectromech Syst 18:1118–1125

    Article  Google Scholar 

  • Lee ER (2003) Microdrop generation. CRC Press, New York, pp 59–61

    Google Scholar 

  • Macchiarini P, Jungebluth P, Go T, Asnaghi MA, Rees LE, Cogan TA, Dodson A, Martorell J, Bellini S, Parnigotto PP, Dickinson SC, Hollander AP, Mantero S, Conconi MT, Birchall MA (2008) Clinical transplantation of a tissue-engineered airway. Lancet 372:2023–2030

    Article  Google Scholar 

  • Mancini M, Moresi M, Sappino F (1996) Rheological behaviour of aqueous dispersions of algal sodium alginates. J Food Eng 28:283–295

    Article  Google Scholar 

  • Martinsen A, Skjak-Braek G, Smidsrød O, Zanetti F, Paoletti S (1991) Comparison of different methods for determination of molecular weight and molecular weight distribution of alginates. Carbohydr Polym 15:171–193

    Article  Google Scholar 

  • McKinley GH (2005) Visco-elasto-capillary thinning and break-up of complex fluids. Rheol Rev 3:1–48

    Google Scholar 

  • Middleman S (1965) Stability of a viscoelastic jet. Chem Eng Sci 20:1037–1040

    Article  Google Scholar 

  • Mironov V, Reis N, Derby B (2006) Bioprinting: a beginning. Tissue Eng 12:631–634

    Article  Google Scholar 

  • Mun RP, Byars JA, Boger DV (1998) The effects of polymer concentration and molecular weight on the breakup of laminar capillary jets. J Non-Newtonian Fluid Mech 74:285–297

    Article  Google Scholar 

  • Reis N, Ainsley C, Derby B (2005) Ink-jet delivery of particle suspensions by piezoelectric droplet ejectors. J Appl Phys 97:094903(1–6)

  • Renardy M (1995) A numerical study of the asymptotic evolution and breakup of Newtonian and viscoelastic jets. J Non-Newton Fluid Mech 59:267–282

    Article  Google Scholar 

  • Rensch C (2006) Creation of small microdrops. MicroFab Technologies Inc., Plano http://www.microfab.com/equipment/technotes/smalldrops_Nov06_v3.pdf. Accessed 13 Mar 2010

  • Rodd LE, Scott TP, Cooper-White JJ, McKinley GH (2005) Capillary break-up rheometry of low-viscosity elastic fluids. Appl Rheol 15:12–27

    Google Scholar 

  • Schena M, Heller RA, Theriault TP, Konrad K, Lachenmeier E, Davis RW (1998) Microarrays: biotechnology’s discovery platform for functional genomics. TIBTECH 16:301–306

    Article  Google Scholar 

  • Shore HJ, Harrison GM (2005) The effect of added polymers on the formation of drops ejected from a nozzle. Phys Fluids 17:033104-033104-7

    Google Scholar 

  • Smidsrød O (1970) Solution properties of alginate. Carbohydr Res 13:259–372

    Article  Google Scholar 

  • Symes MD, Kitson PJ, Yan J, Richmond CJ, Cooper GJ, Bowman RW, Vilbrandt T, Cronin L (2012) Integrated 3D-printed reactionware for chemical synthesis and analysis. Nat Chem 4:349–354

    Article  Google Scholar 

  • Szczech JB, Megaridis CM, Gamota DR (2002) Fine-line conductor manufacturing using drop-on-demand PZT printing technology. IEEE Trans Electron Pack Manuf 25:26–33

    Article  Google Scholar 

  • Tan WH, Takeuchi S (2007) Monodisperse alginate hydrogel microbeads for cell encapsulation. Adv Mater 19:2696–2701

    Article  Google Scholar 

  • Tirtaatmadja V, McKinley GH, Cooper-White JJ (2007) Drop formation and break-up of low viscosity elastic fluids: effects of molecular weight and concentration. Phys Fluids 18:043101-043101-18

    Google Scholar 

  • Vauchel P, Arhaliass A, Legrand J, Kaas R, Baron R (2008) Decrease in dynamic viscosity and average molecular weight of alginate from Laminaria digitata during alkaline extraction. J Phycol 44:515–517

    Article  Google Scholar 

  • Wijshoff H (2010) The dynamics of the piezo inkjet printhead operation. Phys Rep 491:77–177

    Article  Google Scholar 

  • Xu D, Sanchez-Romaguera V, Barbosa S, Travis W, de Wit J, Swan P, Yeates SG (2007) Inkjet printing of polymer solutions and the role of chain entanglement. J Mater Chem 17:4902–4907

    Article  Google Scholar 

  • Yan X, Carr WW, Dong H (2011) Drop-on-demand drop formation of polyethylene oxide solutions. Phys Fluids 23:107101-107101-15

    Google Scholar 

  • Zimm BH (1956) Dynamics of polymer molecules in dilute solution: viscoelasticity, flow birefringence and dielectric loss. J Chem Phys 24:269–279

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The work of CLH was supported by a National Science Foundation Graduate Research Fellowship. The authors would like to acknowledge Meng Zhang and Jinxiang Zhou for helping with the measurements of the material physical properties and Changxue Xu for fruitful discussions. The authors would also like to thank Vince Herran for help with image processing. Thanks for use of a high-speed camera to Jerry Eimen (host) and Randy Schoon (R&D and lab technician) at Cryovac Inc. Duncan, SC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Leigh Herran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herran, C.L., Coutris, N. Drop-on-demand for aqueous solutions of sodium alginate. Exp Fluids 54, 1548 (2013). https://doi.org/10.1007/s00348-013-1548-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-013-1548-9

Keywords

Navigation