Skip to main content
Log in

Oscillations of the large-scale circulation in turbulent mixed convection in a closed rectangular cavity

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Fluid temperature time series are recorded in turbulent mixed convection at specific locations inside a cuboidal convection cell. They reveal instabilities of the large-scale flow structures, which organise the heat transport in an intermediate range of Archimedes numbers, where buoyancy and inertia forces are of similar strength. The instabilities lead to periodic or spontaneous transitions between three and four convection rolls. Further, for either high Rayleigh or Reynolds numbers, for which the flow is either governed by buoyancy or by inertia forces, respectively, stable large-scale circulations (LSCs) develop. In the intermediate RaRe number regime, we ascribe the complex dynamics, visible as oscillation in the temperature time series, to the interaction of the pressure-driven wall jet at the ceiling with the buoyancy-driven LSCs. The maximal main oscillation frequency is about one order of magnitude smaller than the turnover frequencies of either the wall jet-induced circulation rolls or thermally induced LSCs. It is further shown that the periodic reconfigurations of the LSCs can be controlled by adjusting the inflow velocity, that is, the Reynolds number, to generate stable LSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Bailon-Cuba J, Shishkina O, Wagner C, Schumacher J (2012) Low-dimensional model of turbulent mixed convection in a complex domain. Phys Fluids 24:107101

    Article  Google Scholar 

  • Bosbach J, Pennecot J, Wagner C, Raffel M, Lerche T, Repp S (2006) Experimental and numerical simulation of turbulent ventilation in aircraft cabins. Energy 31:694–705

    Article  Google Scholar 

  • Bosbach J, Heider A, Dehne T, Markwart M, Gores I, Bendfeldt P (2012a) Evaluation of cabin displacement ventilation under flight conditions. In: 28th international congress of the aeronautical sciences, Brisbane, Australia

  • Bosbach J, Lange S, Dehne T, Lauenroth G, Hesselbach F, Allzeit M (2012b) Alternative ventilation concepts for aircraft cabins. In: Deutscher Luft- und Raumfahrtkongress, Berlin, Germany

  • Brown E, Ahlers G (2006) Rotations and cessations of the large-scale circulation in turbulent Rayleigh-Bénard convection. J Fluid Mech 568:351–386

    Article  MATH  Google Scholar 

  • Brown E, Ahlers G (2007) Large-scale circulation model for turbulent Rayleigh-Bénard convection. Phys Rev Lett 98:134,501

    Article  Google Scholar 

  • Brown E, Ahlers G (2008) Azimithal asymmetries of the large-scale circulation in turbulent Rayleigh-Bénard convection. Phys Fluids 20:105,105

    Google Scholar 

  • Brown E, Ahlers G (2008) A model of diffusion in a potential well for the dynamics of the large-scale circulation in turbulent Rayleigh-Bénard convection. Phys Fluids 20:075,101

    Google Scholar 

  • Brown E, Ahlers G (2009) The origin of oscillations of the large-scale circulation of turbulent Rayleigh-Bénard convection. J Fluid Mech 638:383–400

    Article  MATH  Google Scholar 

  • Brown E, Nikolaenko A, Ahlers G (2005) Reorientation of the large-scale circulation in turbulent Rayleigh-Bénard convection. Phys Rev Lett 95:084,503

    Google Scholar 

  • Chillà F, Rastello M, Chaumat S, Castaing B (2004) Long relaxation times and tilt sensitivity in Rayleigh-Bénard turbulence. Eur Phys J B 40:223–227

    Article  Google Scholar 

  • Fontenele Araujo F, Grossmann S, Lohse D (2005) Wind reversals in turbulent Rayleigh-Bénard convection. Phys Rev Lett 95:084,502

    Google Scholar 

  • Goelker K (2011) GIMP 2.6 for photographers: image editing with open source software, 1st edn. Rocky Nook, Santa Barbara

    Google Scholar 

  • Ishihara I, Fukui T, Matsumoto R (2002) Natural convection in a vertical rectangular enclosure with symmetrically localized heating and cooling zones. Int J Heat Fluid Flow 23:366–372

    Article  Google Scholar 

  • Kaczorowski M, Wagner C (2009) Analysis of the thermal plumes in turbulent Rayleigh-Bénard convection based on well-resolved numerical simulations. J Fluid Mech 618:89–112

    Article  MATH  Google Scholar 

  • Körner M, Shishkina O, Wagner C, Thess A (2013) Properties of large-scale flow structures in an isothermal ventilated room. Build Environ 59:563–574

    Google Scholar 

  • Kühn M, Bosbach J, Wagner C (2009) Experimental parametric study of forced and mixed convection in a passenger aircraft mock-up. Build Environ 44:961–970

    Article  Google Scholar 

  • Kühn M, Ehrenfried K, Bosbach J, Wagner C (2011) Large-scale tomographic particle image velocimetry using helium-filled soap bubbles. Exp Fluids 50:929–948

    Article  Google Scholar 

  • Kühn M, Ehrenfried K, Bosbach J, Wagner C (2012) Large-scale tomographic PIV in forced and mixed convection using a parallel SMART version. Exp Fluids 53:91–103

    Article  Google Scholar 

  • Mishra P, De A, Verma M, Eswaran V (2011) Dynamics of reorientations and reversals of large-scale flow in Rayleigh-Bénard convection. J Fluid Mech 668:480–499

    Article  MATH  Google Scholar 

  • Podvin B, Sergent A (2012) Proper orthogonal decomposition investigation of turbulent Rayleigh-Bénard convection in a rectangular cavity. Phys Fluids 24:105,106

    Article  Google Scholar 

  • Puthenveettil B, Gunasegarane G, Agrawal Y, Schmeling D, Bosbach J, Arakeri J (2011) Length of near-wall plumes in turbulent convection. J Fluid Mech 685:335–364

    Article  MATH  Google Scholar 

  • Resagk C, du Puits R, Thess A, Dolzhansky F, Grossmann S, Araujo FF, Lohse D (2006) Oscillations of the large scale wind in turbulent thermal convection. Phys Fluids 18:095,105

    Article  Google Scholar 

  • Schmeling D, Westhoff A, Kühn M, Bosbach J, Wagner C (2010) Flow structure formation of turbulent mixed convection in a closed rectangular cavity, New Results in Numerical and Experimental Fluid Mechanics VII, Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), vol 112, Springer, Berlin, pp 553–560

  • Schmeling D, Westhoff A, Kühn M, Bosbach J, Wagner C (2011) Large-scale flow structures and heat transport of turbulent forced and mixed convection in a closed rectangular cavity. Int J Heat Fluid Flow 32:889–900

    Article  Google Scholar 

  • Sergent A, Le Quéré P (2011) Long time evolution of large-scale patterns in a rectangular Rayleigh-Bénard cell. J Phys Conf Ser 318:082,010

    Article  Google Scholar 

  • Shishkina O, Wagner C (2007) Local heat fluxes in turbulent Rayleigh-Bénard convection. Phys Fluids 19:085,107

    Article  Google Scholar 

  • Shishkina O, Wagner C (2012) A numerical study of turbulent mixed convection in an enclosure with heated rectangular elements. J Turb 13:1–21

    Article  MathSciNet  Google Scholar 

  • Sreenivasan K, Bershadskii A, Niemela J (2002) Mean wind and its reversal in thermal convection. Phys Rev E 65:056,306

    Article  Google Scholar 

  • Sugiyama K, Ni R, Stevens R, Chan T, Zhou SQ, Xi HD, Sun C, Grossmann S, Xia KQ, Lohse D (2010) Flow reversals in thermally driven turbulence. Phys Rev Lett 105:034,503

    Article  Google Scholar 

  • van der Poel E, Stevens R, Lohse D (2011) Connecting flow structures and heat flux in turbulent Rayleigh-Bénard convection. Phys Rev E 84:045,303

    Google Scholar 

  • Verein Deutscher Ingenieure VDI - Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (GVC) (ed) (2006) VDI - Wärmeatlas, 10th edn. Springer, Berlin

  • Weiss S, Ahlers G (2011) Turbulent Rayleigh-Bénard convection in a cylindrical container with aspect ratio γ = 0.50 and prandtl number pr = 4.38. J Fluid Mech 676:5–40

    Article  MATH  Google Scholar 

  • Westhoff A, Bosbach J, Schmeling D, Wagner C (2010) Experimental study of low-frequency oscillations and large-scale circulations in turbulent mixed convection. Int J Heat Fluid Flow 31:794–804

    Article  Google Scholar 

  • Xi HD, Xia KQ (2008) Flow mode transitions in turbulent thermal convection. Phys Fluids 20:055,104

    Article  Google Scholar 

  • Xi HD, Zhou SQ, Zhou Q, Chan TS, Xia KQ (2009) Origin of the temperature oscillation in turbulent thermal convection. Phys Rev Lett 102:044,503

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Sven Lange for his help with the visualisations and to Sebastian Wagner for several constructive discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Schmeling.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmeling, D., Bosbach, J. & Wagner, C. Oscillations of the large-scale circulation in turbulent mixed convection in a closed rectangular cavity. Exp Fluids 54, 1517 (2013). https://doi.org/10.1007/s00348-013-1517-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-013-1517-3

Keywords

Navigation