Skip to main content
Log in

The quest for the most spherical bubble: experimental setup and data overview

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

We describe a recently realized experiment producing the most spherical cavitation bubbles today. The bubbles grow inside a liquid from a point plasma generated by a nanosecond laser pulse. Unlike in previous studies, the laser is focussed by a parabolic mirror, resulting in a plasma of unprecedented symmetry. The ensuing bubbles are sufficiently spherical that the hydrostatic pressure gradient caused by gravity becomes the dominant source of asymmetry in the collapse and rebound of the cavitation bubbles. To avoid this natural source of asymmetry, the whole experiment is therefore performed in microgravity conditions (ESA, 53rd and 56th parabolic flight campaign). Cavitation bubbles were observed in microgravity (∼0 g), where their collapse and rebound remain spherical, and in normal gravity (1 g) to hyper-gravity (1.8 g), where a gravity-driven jet appears. Here, we describe the experimental setup and technical results, and overview the science data. A selection of high-quality shadowgraphy movies and time-resolved pressure data is published online.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Akhatov I, Lindau O, et al (2001) Collapse and rebound of a laser-induced cavitation bubble. Phys Fluids 13(10):2805–2819

    Article  Google Scholar 

  • Antoine C (1888) Tensions des vapeurs; nouvelle relation entre les tensions et les temp ratures. Comptes Rendus des Sances de l’Acadmie des Sciences 107:681–837

    Google Scholar 

  • Benjamin TB, Ellis AT (1966) The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries. Phil Trans R Soc Lond A 260(1110):221–240

    Article  Google Scholar 

  • Blake JR (1988) The kelvin impulse—application to cavitation bubble dynamics. J Aust Math Soc B 30(Part 2):127–146

    Article  MathSciNet  MATH  Google Scholar 

  • Blake JR, Keen GS, Tong RP, Wilson M (1999) Acoustic cavitation: the fluid dynamics of non-spherical bubbles. Philos T R Soc A 357(1751):251–267

    Article  MathSciNet  MATH  Google Scholar 

  • Brenner M, Hilgenfeldt S, Lohse D (2002) Single-bubble sonoluminescence. Rev Mod Phys 74(2): 425–484

    Article  Google Scholar 

  • Brujan EA, Keen GS, Vogel A, Blake JR (2002) The final stage of the collapse of a cavitation bubble close to a rigid boundary. Phys Fluids 14(1):85–92

    Article  Google Scholar 

  • Byun KT, Kwak HY (2004) A model of laser-induced cavitation. Jpn J Appl Phys 43(2):621–630. doi:10.1143/JJAP.43.621

    Article  Google Scholar 

  • Cho C, Urquidi J, Gellene G, Wilse Robinson G (2001) Mixture model description of the t-, p dependence of the refractive index of water. J Chem Phys 114(7):3157–3162

    Article  Google Scholar 

  • Hasmatuchi V (2011) Hydrodynamics of a pump-turbine operating at off-design conditions in generating mode. PhD thesis, EPFL-LMH

  • Hickling R (1965) Nucleation of freezing by cavity collapse and its relation to cavitation damage. Nature 206:915–917. doi:10.1038/206915a0

    Article  Google Scholar 

  • Katz JI (1999) Jets from collapsing bubbles. Proc R Soc Lond A 455:323–328

    Article  MATH  Google Scholar 

  • Kobel P, Obreschkow D, Dorsaz N, De Bosset A, Farhat M (2009) Techniques for generating centimetric drops in microgravity and application to cavitation studies. Exp Fluids 47:39–48

    Article  Google Scholar 

  • Lauterborn W (1972) High-speed photography of laser-induced breakdown in liquids. Appl Phys Lett 21(1):27–29. doi:10.1063/1.1654204

    Article  Google Scholar 

  • Lauterborn W, Bolle H (1975) Experimental investigations of cavitation bubble collapse in the neighborhood of a solid boundary. J Fluid Mech 72:391–399

    Article  Google Scholar 

  • Lauterborn W, Kurz T (2010) Physics of bubble oscillations. Rep Prog Phys 73(10):106501. doi:10.1088/0034-4885/73/10/106501

    Article  Google Scholar 

  • Leighton TG, Cleveland RO (2010) Lithotripsy. Proc Inst Mech Eng H 224(2):317–342

    Article  Google Scholar 

  • Lim KY, Quinto-Su PA, et al (2010) Nonspherical laser-induced cavitation bubbles. Phys Rev E 81(1):016308. doi:10.1103/PhysRevE.81.016308

    Article  Google Scholar 

  • Mason TJ, Paniwnyk L, Lorimer JP (1996) The uses of ultrasound in food technology. Ultrason Sonochem 3(3):S253–S260. doi: 10.1016/S1350-4177(96)00034-X

    Article  Google Scholar 

  • Obreschkow D, Kobel P, Dorsaz N, de Bosset A, Nicollier C, Farhat M (2006) Cavitation bubble collapse inside liquid spheres in microgravity. Phys Rev Lett 97(9):094502

    Article  Google Scholar 

  • Obreschkow D, Dorsaz N, Kobel P, de Bosset A, Tinguely M, Field J, Farhat M (2011a) Confined shocks inside isolated liquid volumes: a new path of erosion? Phys Fluids Lett 23(10):101702. doi:10.1063/1.3647583

    Article  Google Scholar 

  • Obreschkow D, Tinguely M, Dorsaz N, Kobel P, de Bosset A, Farhat M (2011b) Universal scaling law for jets of collapsing bubbles. Phys Rev Lett 107:204501. doi:10.1103/PhysRevLett.107.204501

    Article  Google Scholar 

  • Obreschkow D, Bruderer M, Farhat M (2012) Analytical approximations for the collapse of an empty spherical bubble. Phys Rev E 85:066303. doi10.1103/PhysRevE.85.066303:, URL http://link.aps.org/doi/10.1103/PhysRevE.85.066303

  • Ohl CD, Arora M, Dijkink R, Janve V, Lohse D (2006) Surface cleaning from laser-induced cavitation bubbles. Appl Phys Lett 89(7):074102

    Article  Google Scholar 

  • Ohl CD, Kurz T, Geisler R, Lindau O, Lauterborn W (1999) Bubble dynamics, shock waves and sonoluminescence. Philos T R Soc A 357(1751):269–294

    Article  MathSciNet  MATH  Google Scholar 

  • Philipp A, Lauterborn W (1998) Cavitation erosion by single laser-produced bubbles. J Fluid Mech 361:75–116

    Article  MATH  Google Scholar 

  • Plesset M, Chapman RB (1971) Collapse of an initially spherical vapor cavity in the neighborhood of a solid boundary. J Fluid Mech 47:283–290

    Article  Google Scholar 

  • Rayleigh L (1917) On the pressure developed in a liquid during the collapse of a spherical cavity. Philos Mag 34:94–98

    MATH  Google Scholar 

  • Sato T, Tinguely M, Oizumi M, Farhat M (2013) Evidence for hydrogen generation in laser- or spark-induced cavitation bubbles. Appl Phys Lett 102(7):074105. doi:10.1063/1.4793193

    Article  Google Scholar 

  • Schnerr G, Sezal I, Schmidt S (2008) Numerical investigation of three-dimensional cloud cavitation with special emphasis on collapse induced shock dynamics. Phys Fluids 20(4):040703

    Article  Google Scholar 

  • Stokes G (1847) Notebook preserved in the Cambridge University Library, Add. MS. 7656. NB23

  • Suslick KS (1990) Sonochemistry. Science 247(4949):1439–1445

    Article  Google Scholar 

  • Tandiono, Ohl SW, Ow DSW, Klaseboer E, Wong VV, Dumke R, Ohl CD (2011) Sonochemistry and sonoluminescence in microfluidics. Proc Natl Acad Sci USA 108(15):5996–5998

  • Tinguely M (2013) The effect of pressure gradient on the collapse of cavitation bubbles in normal and reduced gravity. PhD thesis, Ecole Polytechnique Fédérale de Lausanne

  • Tinguely M, Obreschkow D, Kobel P, Dorsaz N, de Bosset A, Farhat M (2012) Energy partition at the collapse of spherical cavitation bubbles. Phys Rev E 86(4):046315. doi:10.1103/PhysRevE.86.046315

    Google Scholar 

  • Tomita Y, Shima A (1990) High-speed photographic observations of laser-induced cavitation bubbles in water. Acustica 71(3):161–171

    Google Scholar 

  • Vogel A, Busch S, Parlitz U (1996) Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water. J Acoust Soc Am 100(1):148–165. doi:10.1121/1.415878

    Article  Google Scholar 

  • Vogel A, Noack J, et al (1999) Energy balance of optical breakdown in water at nanosecond to femtosecond time scales. Appl Phys B Lasers Opt 68:271–280

    Article  Google Scholar 

  • Wang QX, Blake JR (2010) Non-spherical bubble dynamics in a compressible liquid. Part 1. Travelling acoustic wave. J Fluid Mech 659:191–224. doi:10.1017/S0022112010002430

    Article  MathSciNet  MATH  Google Scholar 

  • Wolfrum B, Kurz T, Mettin R, Lauterborn W (2003) Shock wave induced interaction of microbubbles and boundaries. Phys Fluids 15(10):2916–2922

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Swiss NSF (Grant No. 200020-116641 and PBELP2-130895) and the European Space Agency ESA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danail Obreschkow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Obreschkow, D., Tinguely, M., Dorsaz, N. et al. The quest for the most spherical bubble: experimental setup and data overview. Exp Fluids 54, 1503 (2013). https://doi.org/10.1007/s00348-013-1503-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-013-1503-9

Keywords

Navigation