Skip to main content
Log in

The flow past a cactus-inspired grooved cylinder

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The star-shaped cross section of giant cylindrical cactus plants is thought to be aerodynamically favorable for protection against toppling by strong winds. Particle image velocimetry is used to investigate the flow details within the surface grooves and in the immediate wake of a cactus-inspired model cylinder with eight longitudinal grooves, at biologically relevant Reynolds numbers between 50 × 103 and 170 × 103. The wake flow is analyzed and compared to a similarly sized circular cylinder. At the lowest Re tested, the wakes from the two geometries are similar. At higher Re, the cactus wake exhibits superior behavior as seen from the mean and turbulent velocities, suggesting that the flow mechanisms are Re dependent. The flow within the surface grooves reveals counter rotating rollers, while the geometrical ridges act as vortex generators known to help with the surface flow attachment. Lastly, a simplistic analysis is described to recover, qualitatively, certain time-dependent flow features from the randomly acquired PIV realizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abboud JE, Karaki WS, Oweis GF (2011). Particle image velocimetry measurements in the wake of a cactus-shaped cylinder. J Fluids Eng 133(9), art no. 094502

    Google Scholar 

  • Amitay M, Smith BL, Glezer A (1998) Aerodynamic flow control using synthetic jet technology. 36th Aerospace Sciences Meeting and Exhibit, Reno, Nevada, Jan. 12–15

  • Apelt CJ, West GS, Szewczyk AA (1973) The effects of wake splitter plates on the flow past a circular cylinder in the range 104 < R < 5 × 104. J Fluid Mech 61(1):187–198

    Article  Google Scholar 

  • Babu P, Mahesh K (2008). Aerodynamic loads on cactus-shaped cylinders at low Reynolds numbers. Phys Fluids, vol 20, art no. 035112; doi:10.1063/1.2887982

  • Bearman PW, Harvey JK (1993) Control of circular cylinder flow by the use of dimples. AIAA J 31(10):1753–1756 188

    Article  Google Scholar 

  • Bushnell DM (1991) Drag reduction in nature. Ann Rev Fluid Mech 23:65–79

    Article  Google Scholar 

  • Cantwell B, Coles D (1983) An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder. J Fluid Mech 136:321–374

    Article  Google Scholar 

  • Djeridi H, Braza M, Perrin R, Harran G, Cid E, Cazin S (2003) Near-wake turbulence properties around a circular cylinder at high Reynolds number. Flow Turbul Combust 71:19–34. doi:10.1023/B:APPL.0000014930.49408.53

    Article  MATH  Google Scholar 

  • Figliola RS, Beasley DE (2000). Theory and design of mechanical measurements. 3rd ed., Wiley: NY, pp 123–126. ISBN:0471350834

  • Geller GN, Nobel PS (1984) Cactus ribs: influence on PAR interception and CO2 uptake. Photosynthetica 18:482–494

    Google Scholar 

  • Han D, Mungal MG (2003) Simultaneous measurements of velocity and CH distributions. Part 1: jet flames in co-flow. Combust Flame 132:565–590

    Article  Google Scholar 

  • Hodge C (1991) All about saguaros, Arizona Highways Publisher: Phoenix. ISBN:0916179605, 9780916179601

  • Huang S, Kitney N (2010). Model test on drag of cylinders with helical grooves at high Reynolds numbers. In: Proceedings AMSE 29th International Conference Ocean, Offshore & Arctic Eng OMAE2010, June 2010, Shanghai, China

  • Karaki W, Abboud J, Daher N, Osman M, Oweis G (2008). PIV Measurements in the Wake of a Cactus Shaped Cylinder. ASME 2008 International Mechanical Engineering Congress and Exposition (IMECE2008), Boston, Massachusetts, USA, http://dx.doi.org/10.1115/IMECE2008-67405

  • Kwon K, Choi H (1996) Control of laminar vortex shedding behind a circular cylinder using splitter plates. Phys Fluids 8(2):479–486

    Article  MATH  Google Scholar 

  • Lim HC, Lee SJ (2002) Flow control of circular cylinders with longitudinal grooved surfaces. AIAA J 40(10):2027–2036

    Article  Google Scholar 

  • Liu YZ, Shi LL, Yu J (2011) TR-PIV measurements of the wake behind a grooved cylinder at low Reynolds number. J Fluids Struct 27:394–407

    Article  Google Scholar 

  • Morgenthal G, Walther JH (2007) An immersed interface method for the vortex-in-cell algorithm. Comput Struct 85:712–726

    Article  Google Scholar 

  • Niklas KJ, Molina-Freaner F, Tinoco-Ojanguren C (1999) Biomechanics of the columnar cactus pachycereus pringlei. Am J Bot 86(6):767–775

    Article  Google Scholar 

  • Oweis GF, Ceccio SL (2005) Instantaneous and time averaged flow fields of multiple vortices in the tip region of a ducted propulsor. Exp Fluid 38(5):615–636

    Article  Google Scholar 

  • Owen JC, Bearman PW, Szewczyk AA (2001) Passive control of VIV with drag reduction. J Fluid Struct 15:597–605

    Article  Google Scholar 

  • Perrin R, Cid E, Cazin S, Sevrain A, Braza M, Moradei F, Harran G (2007) Phase-averaged measurements of the turbulence properties in the near wake of a circular cylinder at high Reynolds number by 2C-PIV and 3C-PIV”. Exp Fluid 42:93–109

    Article  Google Scholar 

  • Raffel M, Wilbert CE, Kompenhans (1998) Particle image velocimetry: a practical guide. Springer ISBN:9783540636830

  • Shukla S, Govardhan RN, Arakeri JH (2009) Flow over a cylinder with a hinged-splitter plate. J Fluid Struct 25:713–720

    Article  Google Scholar 

  • Talley S, Mungal G (2002) Flow around cactus-shaped cylinders center for turbulence research annual brief. NASA Ames/Stanford University, California, pp 363–376

    Google Scholar 

  • Talley S, Iaccarino G, Mungal G, Mansur NN (2001) An experimental and computational investigation of flow past cacti. Annual Research Briefs Center for Turbulence Research, California, pp 51–64

    Google Scholar 

  • Tu J, Miau J, Chou J, Lee G (2005). Sensing Flow Separation on a Circular Cylinder by MEMS Thermal-Film Sensors. 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, Jan. 10–13

  • White FM (2011) Fluid mechanics 7th Ed. (SI units). McGraw-Hill, NY, pp 236. ISBN 978-007-131121-2

  • Williamson CHK (1996) Vortex dynamics in the cylinder wake. Ann Rev Fluid Mech 28:477–539

    Article  Google Scholar 

  • Yamagishi Y, Oki M (2004) Effect of groove shape on flow characteristics around a circular cylinder with grooves. J Vis 7(3):209–216

    Article  Google Scholar 

  • Yamagishi Y, Oki M (2005) Effect of the number of grooves on flow characteristics around a circular cylinder with triangular grooves. J Vis 8(1):57–64

    Article  Google Scholar 

  • You D, Moin P (2007) Effects of hydrophobic surfaces on the drag and lift of a circular cylinder. Phys Fluids 19:08170

    Google Scholar 

Download references

Acknowledgments

This work was supported by the University Research Board of the American University of Beirut.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghanem F. Oweis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Makdah, A.M., Oweis, G.F. The flow past a cactus-inspired grooved cylinder. Exp Fluids 54, 1464 (2013). https://doi.org/10.1007/s00348-013-1464-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-013-1464-z

Keywords

Navigation